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ABSTRACT

Simulation is one of the most powerful tools for model-
ing and evaluating the performance of complex systems,
however, it is computationally slow. One approach to over-
come this limitation is to develop a “metamodel”. In other
words, generate a “surrogate” model of the original system
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impractical (if at all feasible) to perform any parametric
study of system performance, especially for systems with
a large parameter space. Unless substantial speedup of the
performance evaluation process can be achieved, system-
atic performance studies of most real-world problems are
beyond reach, even with supercomputers.

One alternative for achieving the required speedup is

that accurately captures the relationships between input and through “metamodeling”. In this framework, any simulator

output, yet it is computationally more efficient than simula-
tion. Neural networks (NN) are known to be good function

approximators and thus make good metamodel candidates.

During training, a NN is presented with several input/output
pairs, and is expected to learn the functional relationship
between inputs and outputs of the simulation model. So,
a trained net campredict the output for inputs other than
the ones presented during training. This ability of NNs to
generalize depends on the number of training pairs used.
In general, a large number of such pairs is required and,
since they are obtained through simulation, the metamodel
development is slow. In DES simulation it is often pos-
sible to use perturbation analysis to also obtain sensitivity
information with respect to various input parameters. In
this paper, we investigate the use of sensitivity information
to reduce the simulation effort required for training a NN
metamodel.

1 INTRODUCTION

Simulation is arguably the most versatile and general-
purpose tool available today for modeling complex systems
such as Discrete Event Systems (DES). It can be used for
performance evaluation, system design, decision making,
and planning. Such applications typically involve the use
of simulation to answer a multitude of “what-if” questions
under various scenaria, each corresponding to different pa-
rameters, designs or decisions. However, simulation is
notoriously time consuming. For complex systems, per-
formance evaluation under a single set of input parameters
can take several minutes even hours. As a result, it is
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is viewed as a function that maps any vector of input
parameterx = [x1,---,xy] to a set of M performance
metrics of interesy = [y1, - - -, yu], that is
y = @(X). 1)
Since the evaluation of the functieh(-) is generally com-
plex and time consuming, metamodeling seeks a much sim-

pler and computationally more efficient “surrogate model”
®(-) such that

d(x) ~ D(X). 2

for all input parameters of interest. A typical approach
for building ®(-) is to use simulation to obtain a training
set of Q input-output pairs{(x;,y;), i =1,---, 0}, and
try to determine a function that captures the input-output
relationship that generated th@ samples. Of course, the
expectation is that the surrogate model will be such that (2)
will hold not only for the training pairs, but also fanyx in
some domain of interest. This ability of the surrogate model
to produce a reasonable response to an input that is not
included in the training set is referred to gsneralization
Several authors have addressed simulation metamod-
eling. Zeimer and Tew (1995) used polynomial fitting to
develop a metamodel for a Tactical Electronic Reconnais-
sance Simulation Model (TERSM) that estimates the number
of ground-based radar sites detected by a reconnaissance
aircraft as a function of its flying mission. Other approaches
have used statistical analysis. Santos and Nova (1999) used
least squares estimation for non-linear metamodel estimation
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while Cheng (1999) used regression using Bayesian meth-
ods. Neural networks (NN) are generally known as good
function approximators and thus make good candidates for
surrogate functions. Jablunovsky et al. (2000) have used
a back-propagation neural net to capture the behaviour of
a Command and Control (C2) network. In some of our

“ill-disposed” algorithm to derive a probability distribution
that allows them to determine a more realistic bound on the
sample size as well as the average generalization error.
This paper is organized as follows. In the next section
we present the notation that we will use in the sequel. In
Section 3 we briefly describe the standard back-propagation

earlier work (Cassandras et al. 1998), we used a Cascadeneural network and in Section 4 we modify the algorithm to

Correlation NN (Fahlman and Lebiere 1990) to generate
metamodels for the TERSM mentioned above and for an
Aircraft Refueling and Maintenance System (ARMS).

Neural network metamodels, though versatile, generally
require a large number of training pairs before they acquire
good generalization capabilities. This implies that many
simulation runs are necessary to build a metamodel. To
address this problem, in our earlier work (Cassandras et al.
1998) we also proposed the use@dncurrent Estimation
(Cassandras and Panayiotou 1999) as a possible way of
collecting more training pairs from a single simulation run.
In this work we propose a different approach where we
use sensitivity (derivative) information to train the neural
network.

More specifically, it is by now well-documented in
the literature that the nature of sample paths of Discrete
Event Systems (DES) can be exploited so as to extract
a significant amount of information, beyond merely an
estimate of a performance measdré&). It has been shown
that observing a sample path under some parameter value
allows us to efficiently obtain estimates of derivatives of the
form d®/dx which are in many cases unbiased and strongly

consistent (e.g., see (Cassandras 1993; Glasserman 1991,

Ho and Cao 1991) where Infinitesimal Perturbation Analysis
(IPA) and its extensions are described). The question that
arises then is how the sensitivity information, made available
by PA, can be used to construct metamodels. In this paper
we recognize that since (2) must hold forxalh the domain

of interest, the partial derivatives of the two functions with
respect to any; should also be equal. As a result, we
modify the standard back-propagation algorithm to also use
this information as explained in Section 4.

To our knowledge, this approach of using sensitivity
information to reduce the training sample size is new. For
the “classification” problem (as opposed to the “function
approximation” problem we investigate in this paper) sev-
eral authors have addressed the issue of determining the
minimum training sample size for a neural network to have
good generalization properties. Baum and Haussler (1989)
found that for a network wittv nodes andV weights, the
number of randomly selected samples required to achieve
correct classification for at leagfh — 5) fraction of the
test examples isz > O (£ log ). Mehrotra et al. (1991)
found a tighter bound assuming that the training samples are
chosen close to the cluster boundaries. The generalization
performance of practical algorithms is also the focal point
in Takahashi and Gu (1998). These authors use the so called
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include any available sensitivity information. In Section 5
we demonstrate the potential advantages of the approach with
two numerical examples. Finally we close with conclusions
and future plans in Section 6.

2 NOTATION

For the purposes of this paper, we assume a 3-layer neural
network where

M
H
N

Yk

Number of units (neurons) in the output layer.
Number of units in the hidden layer.

Number of units in the input layer.

Output of thekth unit of the output layerk =
1,---. M.

Output of jth hidden unit,j =0, ---, H (zo=1
corresponds to the bias input of output layer units).
Input of theith unit,i =0,---, N (xo =1 corre-
sponds to the bias input of hidden layer units).

= [#],. Target output given an input vectar,,
wherek=1,---, M, p=1---,0 andQ is the
number of training pairs.

Sensitivity of kth network output with respect to
its ith input, dy; = %

= [ski]p Target sensitivity ;) given an input vec-
tor x,. (For DES, we assume that this information
is obtained through some Perturbation Analysis
(PA) technique).

Activation function of output layer units.
Activation function of hidden layer units.

d

Sp

JAQ)
g()

3 BACK-PROPAGATION NEURAL NET

The activation of théth output unit of a standard, three layer
back-propagation neural network (BPNN) as a function of

the inputx = [x1, - - -, x,,] iS given by:

w = f (y;fN ) 3)

H
W=D wpg, (4)

=0
g = g() (5)

N
AN = > wx (6)

i=0
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where, w; is the weight from thejth hidden unit to the
input of thekth output unit andy;; is the weight from the
ith input to thejth hidden unit.

The learning procedure of the back-propagation neural
network is based on minimizing the sum of squared errors.
That is, minimize an error function of the form:

M

1
=5 > e — ).

()

The minimization is done by gradient descent methods,
where back-propagation involves the chain rule to back-
propagate errors from the network’s outputs to each of the
network’s weights, see (Fausett 1994) for details. Next,
we investigate a possible way of utilizing the sensitivity

information that can be obtained through some PA technique.

4 DERIVATIVE BACK-PROPAGATION
NEURAL NETWORKS

If equation (2) is supposed to hold for alin the domain
of interest ofx, then it is reasonable to require that:

0P (X)
3)6,'

ID(X)
axi

., N. (8)

,o )
In other words, the sensitivity of the neural net output with
respect to each one of its inputs should be approximately
equalto the sensitivity of the simulation model with respect to
the same inputs. Though comple, itis possible to determine
the neural network’s sensitivity with respect to its inputs
using calculus. Also, for several discrete event systems, the
model’s sensitivity with respect to its input parameters can
be calculated using some perturbation analysis technique.
Thus, the main idea behind our approach is to adapt (7) to
account not only for the error in the output value, but for

the error in the sensitivity as well. Therefore, the neural
net training objective function becomes

o M ) ‘3 M N
EX::tk_yk) +E§;(Sk1_dkl . (9)

network we consider in this paper, this is done by the chain
rule of differentiation as shown below:

Yk r(IN 3y/{N
w3 - )
ki 0x; 7Ok 0X;
A 0z
= f/(yliN)ijk_J
= o
A 9ziN
) By () 5
j=1 !
H
= (Y)Y wing' (V) uy; - (20)

<
1
N

Subsequently, if we want to use gradient based tech-
nigues to minimize the error function of (9) we neggf_—k

and gu—E for all i, j, kK which are derived next, through
repetitive use of the chain rule of differentiation.

N .
o = —a(fK—)’K)a?UkaK—ﬁ;[emaajf;}
= —atx — 0 f (3§ )i)ny
—ﬂZ[wo( (o );ZK S(K, i)
(1) (&) o)
= —Ol(tK—)’K)f/(yII(N)ZJ
s [exi (77 (V&) 25K, D
i=1
+f () ¢ (V) wis)] @D
where

eri = (Sgi — dii)

an
The first term is the usual error term used in standard back-

propagation neural networks. The second term, isthe errorin
the sensitivity of the neural net compared to the sensitivity
of the model. Finally, 0O< ¢ <1 andg = 1— « are
weighting factors that determine the significance associated
with the derivative error. Note that § = 0, then we get
the standard back-propagation algorithm.

Next, if we are interested in minimizing the error func-
tion of (9), we need to determine the neural network’s
sensitivity with respect to its inputgy;. For the 3-layer
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Sk, l)—Zw]kg ( )u,j.

j=1
Similarly,

oE
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M
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Note that these expressions get considerably simpler
when the activation function of the output layer units are
linear. In this casef(x) = x, f/'(x) =1, andf”(x) = 0.
Therefore,

oE
= —altk —yx)zJ
3wJK
N
—Bg’' (ZfN) > (ki —dgiuis  (13)
i=1
and
M
0E /( IN)
= —ag(zj )x (te — y)wyk
dus 8 \2y lkzﬂ Y J
M N
—BY_ Y eriws -

k=1i=1

(¢ (5 s+ (47) a0
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Finally, the weight updates at every iteratioare given

by
oE
wjk(t+1)=wjk(t)—J/8 (15)
Wk
and
oE
wijt+1) =u;@) — Yo (16)
u,'/'
foralli=0,---,N, j=0,---,H, k=1,---, M. Where

y isthe learning rate an% anda'u—‘f/_ are given by (11) and

(12) respectively (Note that= 0 corresponds to the bias
input of a neuron). In the sequel, this will be referred to as
the Derivative Back-propagation Neural Network (DBPNN).
At this point, it is worth pointing out that apart from the
learning ratey one needs to determine the weight to be
given to the derivative errg8 = 1—«. This is an important
factor that may affect the convergence of the algorithm as
discussed later in the paper.

5 NUMERICAL RESULTS

In this section we present some preliminary results that
show the potential benefit of using the DBPNN training
algorithm described in equations (15) and (16).

In our first experiment we try to approximate the func-
tion y = x2 in the interval[—10, 10]. For this experiment,
we use a neural network with 20 hidden units. First, we used
just three input-output pairg—10, 100), (0, 0), (10, 100)}
to train a standard back-propagation neural network (BPNN).
Subsequently, we added the derivatives at these three points
and used the information to train a network using DBPNN.
For this experiment we usefl = 0.1. The outputs of the
two networks as well as the target output function are shown
in Figure 1. As seen in the figure, the DBPNN approx-
imates the target function much better than the standard
BPNN. Also shown in the figure is the absolute value of
the approximation error of each network for every value
of x in [—10, 10] which also demonstrates the benefit of
DBPNN.

In order to compare the generalization ability of each
network, we integrate the area under the error curve of each
network and plot it in Figure 2 as a function of the number of
points used during the training of the two networks. As seen
in the figure, DBPNN achieves much better generalization
than standard back-propagation neural net, especially when
the number of training points is small.

Next we consider ai/ /M /1 queueing network where
we are interested in the average time that customers spend
in the systen®, as a function of the traffic intensify. For
this system, the IPA algorithm for determinifg is given
in (Cassandras 1993). Figure 3 shows the approximations
generated by BPNN and DBPNN when both networks have
20 hidden units and are trained with only 5 train points
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Figure 3: Approximation of the Average System Time in an
M/M/1 Queueing System

and for DBPNNg = 0.01. As seen in the figure, DBPNN

again achieves a much better generalization than the standar

back-propagation network.
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Finally, Figure 4 shows that area under the generaliza-
tion error for the two networks. Again, DBPNN achieves
a much better generalization than BPNN especially for a
small number of training points.

1

— - BPNN
LI S i  Hb'PP i

\ — DBPNN

Error Area
o
o
-
-

o
=
-

3 5 7 9 11 13 15
Number of Training Points
Figure 4: Area Under the Absolute Error of the NN Ap-
proximations for the Average System Time in &fy M /1
System

Note that for the second experiment we have setgthe
parameter to a very small valyg = 0.01). The reason is
that asp approaches 1, the system time goes asymptotically
to infinity and therefore the derivative at this point becomes
very large. As a result, the derivative error for this point
dominates the entire error function, so, the neural network
in its effort to minimize the total error, it approximates
only that derivative well, but does not approximate well
the remaining points. Furthermore, we point out that other
factors may also play a role in the value of th@arameter.
For example, if we have noisy estimates of the derivatives,
it may be preferable to also sgtto a small value in order
to avoid noise from taking over the output of the neural
network. More research is required to determined hw
is set.

6 CONCLUSIONS

When dealing with complex systems, simulation is usually
the only alternative for performance evaluation however, itis
notoriously slow, thus the need for “metamodels”. Neural

networks are considered as good function approximators
thus make good metamodel candidates. However, if a
neural net is to adequately learn the functional relationship
between the inputs and outputs of a simulation model it
requires a significant number of input/output pairs. Since
such information can only be obtained through simulation,
it means that the training phase of the neural network
will be long. In this paper, we investigate the use of

dsensitivity information in the training of back-propagation

neural network. Some preliminary results indicate that the
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use of sensitivity information can significantly reduce the
number of training input/output pairs required which in

turn implies that the metamodel development phase will be

expedited.
The use of sensitivity information during training of

neural networks creates several issues that need to be ad-
dressed and are part of our future plans. First, the addition

of the derivative error in (9) makes the training objective
function more complex. One problem that has been ob-
served during our experiments is that this addition may

Mehrotra, K. G., C. K. Mohan, and S. Ranka. 1991. Bounds
on the number of samples needed for neural learning.
IEEE Transactions on Neural NetworR§5): 548-558.

Santos, M. I. R. d. and A. M. O. P. Nova. 1999. The main
issues in nonlinear simulation metamodel estimation.
In Proceedings of Winter Simulation Conferen662—
509.

Takahashi, H. and H. Gu. 1998. A tight bound on concept
learning.IEEE Transactions on Neural NetworRg6):
1191-1202.

create several local minima and as a result convergence Zeimer, M. A. and J. D. Tew. 1995. Metamodel applica-

issues may arise. Furthermore, the importance associated

with the derivative errors (i.e., parametg) needs to be

further investigated. As mentioned earlier, this parameter

may be critical to the quality of the approximation as well
as the convergence of the training algorithm.
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