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ABSTRACT

Simulation is one of the most powerful tools for mode
ing and evaluating the performance of complex system
however, it is computationally slow. One approach to ove
come this limitation is to develop a “metamodel”. In othe
words, generate a “surrogate” model of the original syste
that accurately captures the relationships between input
output, yet it is computationally more efficient than simula
tion. Neural networks (NN) are known to be good functio
approximators and thus make good metamodel candida
During training, a NN is presented with several input/outp
pairs, and is expected to learn the functional relationsh
between inputs and outputs of the simulation model. S
a trained net canpredict the output for inputs other than
the ones presented during training. This ability of NNs
generalize depends on the number of training pairs us
In general, a large number of such pairs is required a
since they are obtained through simulation, the metamo
development is slow. In DES simulation it is often pos
sible to use perturbation analysis to also obtain sensitiv
information with respect to various input parameters.
this paper, we investigate the use of sensitivity informatio
to reduce the simulation effort required for training a N
metamodel.

1 INTRODUCTION

Simulation is arguably the most versatile and gener
purpose tool available today for modeling complex system
such as Discrete Event Systems (DES). It can be used
performance evaluation, system design, decision maki
and planning. Such applications typically involve the us
of simulation to answer a multitude of “what-if” question
under various scenaria, each corresponding to different
rameters, designs or decisions. However, simulation
notoriously time consuming. For complex systems, pe
formance evaluation under a single set of input paramet
can take several minutes even hours. As a result, it
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impractical (if at all feasible) to perform any parametric
study of system performance, especially for systems wi
a large parameter space. Unless substantial speedup of
performance evaluation process can be achieved, syste
atic performance studies of most real-world problems ar
beyond reach, even with supercomputers.

One alternative for achieving the required speedup
through “metamodeling”. In this framework, any simulator
is viewed as a function that maps any vector of inpu
parametersx = [x1, · · · , xN ] to a set ofM performance
metrics of interesty = [y1, · · · , yM ], that is

y = 8(x). (1)

Since the evaluation of the function8(·) is generally com-
plex and time consuming, metamodeling seeks a much sim
pler and computationally more efficient “surrogate model
8̂(·) such that

8̂(x) ≈ 8(x). (2)

for all input parameters of interest. A typical approach
for building 8̂(·) is to use simulation to obtain a training
set ofQ input-output pairs{(xi , yi ), i = 1, · · · ,Q}, and
try to determine a function that captures the input-outpu
relationship that generated theQ samples. Of course, the
expectation is that the surrogate model will be such that (2
will hold not only for the training pairs, but also foranyx in
some domain of interest. This ability of the surrogate mode
to produce a reasonable response to an input that is n
included in the training set is referred to asgeneralization.

Several authors have addressed simulation metamo
eling. Zeimer and Tew (1995) used polynomial fitting to
develop a metamodel for a Tactical Electronic Reconnai
sance Simulation Model (TERSM) that estimates the numb
of ground-based radar sites detected by a reconnaissa
aircraft as a function of its flying mission. Other approache
have used statistical analysis. Santos and Nova (1999) us
least squares estimation for non-linear metamodel estimati
5



Panayiotou, Cassandras, and Gong

th
od
fo

sed
r o
ur
ad
te
an

lly
ire
ny
To

t a

y o
n.
e

al

ete
ac
n

ue
he
gly
99

sis
ha
ble
pe

th
e
se

ty
or
n
v-
th

ve
89

ev

ar
tio
int
lle

e

n
n
on

ith
s

ral

.

s

f

while Cheng (1999) used regression using Bayesian me
ods. Neural networks (NN) are generally known as go
function approximators and thus make good candidates
surrogate functions. Jablunovsky et al. (2000) have u
a back-propagation neural net to capture the behaviou
a Command and Control (C2) network. In some of o
earlier work (Cassandras et al. 1998), we used a Casc
Correlation NN (Fahlman and Lebiere 1990) to genera
metamodels for the TERSM mentioned above and for
Aircraft Refueling and Maintenance System (ARMS).

Neural network metamodels, though versatile, genera
require a large number of training pairs before they acqu
good generalization capabilities. This implies that ma
simulation runs are necessary to build a metamodel.
address this problem, in our earlier work (Cassandras e
1998) we also proposed the use ofConcurrent Estimation
(Cassandras and Panayiotou 1999) as a possible wa
collecting more training pairs from a single simulation ru
In this work we propose a different approach where w
use sensitivity (derivative) information to train the neur
network.

More specifically, it is by now well-documented in
the literature that the nature of sample paths of Discr
Event Systems (DES) can be exploited so as to extr
a significant amount of information, beyond merely a
estimate of a performance measure8(x). It has been shown
that observing a sample path under some parameter valx

allows us to efficiently obtain estimates of derivatives of t
form d8/dx which are in many cases unbiased and stron
consistent (e.g., see (Cassandras 1993; Glasserman 1
Ho and Cao 1991) where Infinitesimal Perturbation Analy
(IPA) and its extensions are described). The question t
arises then is how the sensitivity information, made availa
by PA, can be used to construct metamodels. In this pa
we recognize that since (2) must hold for allx in the domain
of interest, the partial derivatives of the two functions wi
respect to anyxi should also be equal. As a result, w
modify the standard back-propagation algorithm to also u
this information as explained in Section 4.

To our knowledge, this approach of using sensitivi
information to reduce the training sample size is new. F
the “classification” problem (as opposed to the “functio
approximation” problem we investigate in this paper) se
eral authors have addressed the issue of determining
minimum training sample size for a neural network to ha
good generalization properties. Baum and Haussler (19
found that for a network withN nodes andW weights, the
number of randomly selected samples required to achi
correct classification for at least(1 − ε

2) fraction of the
test examples ism ≥ O (W

ε
log N

ε

)
. Mehrotra et al. (1991)

found a tighter bound assuming that the training samples
chosen close to the cluster boundaries. The generaliza
performance of practical algorithms is also the focal po
in Takahashi and Gu (1998). These authors use the so ca
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“ill-disposed” algorithm to derive a probability distribution
that allows them to determine a more realistic bound on th
sample size as well as the average generalization error.

This paper is organized as follows. In the next sectio
we present the notation that we will use in the sequel. I
Section 3 we briefly describe the standard back-propagati
neural network and in Section 4 we modify the algorithm to
include any available sensitivity information. In Section 5
we demonstrate the potential advantages of the approach w
two numerical examples. Finally we close with conclusion
and future plans in Section 6.

2 NOTATION

For the purposes of this paper, we assume a 3-layer neu
network where

M Number of units (neurons) in the output layer.
H Number of units in the hidden layer.
N Number of units in the input layer.
yk Output of thekth unit of the output layer,k =

1, · · · ,M.
zj Output of j th hidden unit,j = 0, · · · , H (z0 = 1

corresponds to the bias input of output layer units)
xi Input of theith unit, i = 0, · · · , N (x0 = 1 corre-

sponds to the bias input of hidden layer units).
tp = [tk]p. Target output given an input vectorxp,

wherek = 1, · · · ,M, p = 1, · · · ,Q andQ is the
number of training pairs.

dki Sensitivity of kth network output with respect to
its ith input, dki = ∂yk

∂xi
.

Sp = [ski]p Target sensitivity (dki) given an input vec-
tor xp. (For DES, we assume that this information
is obtained through some Perturbation Analysi
(PA) technique).

f (·) Activation function of output layer units.
g(·) Activation function of hidden layer units.

3 BACK-PROPAGATION NEURAL NET

The activation of thekth output unit of a standard, three layer
back-propagation neural network (BPNN) as a function o
the inputx = [x1, · · · , xn] is given by:

yk = f
(
yINk

)
(3)

yINk =
H∑
j=0

wjkzj (4)

zj = g
(
zINj

)
(5)

zINj =
N∑
i=0

uij xi (6)
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where,wjk is the weight from thej th hidden unit to the
input of thekth output unit anduij is the weight from the
ith input to thej th hidden unit.

The learning procedure of the back-propagation neur
network is based on minimizing the sum of squared error
That is, minimize an error function of the form:

E = 1

2

M∑
k=1

(tk − yk)2. (7)

The minimization is done by gradient descent method
where back-propagation involves the chain rule to back
propagate errors from the network’s outputs to each of th
network’s weights, see (Fausett 1994) for details. Nex
we investigate a possible way of utilizing the sensitivity
information that can be obtained through some PA techniqu

4 DERIVATIVE BACK-PROPAGATION
NEURAL NETWORKS

If equation (2) is supposed to hold for allx in the domain
of interest ofx, then it is reasonable to require that:

∂8̂(x)
∂xi

≈ ∂8(x)
∂xi

, i = 1, · · · , N. (8)

In other words, the sensitivity of the neural net output with
respect to each one of its inputs should be approximate
equal to the sensitivity of the simulation model with respect t
the same inputs. Though complex, it is possible to determin
the neural network’s sensitivity with respect to its inputs
using calculus. Also, for several discrete event systems, t
model’s sensitivity with respect to its input parameters ca
be calculated using some perturbation analysis techniqu
Thus, the main idea behind our approach is to adapt (7)
account not only for the error in the output value, but fo
the error in the sensitivity as well. Therefore, the neura
net training objective function becomes

E = α

2

M∑
k=1

(tk − yk)2+ β
2

M∑
k=1

N∑
i=1

(ski − dki)2 . (9)

The first term is the usual error term used in standard bac
propagation neural networks. The second term, is the error
the sensitivity of the neural net compared to the sensitivit
of the model. Finally, 0≤ α ≤ 1 and β = 1 − α are
weighting factors that determine the significance associat
with the derivative error. Note that ifβ = 0, then we get
the standard back-propagation algorithm.

Next, if we are interested in minimizing the error func-
tion of (9), we need to determine the neural network’
sensitivity with respect to its inputs,dki . For the 3-layer
33
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network we consider in this paper, this is done by the cha
rule of differentiation as shown below:

dki = ∂yk

∂xi
= f ′

(
yINk

) ∂yINk
∂xi

= f ′
(
yINk

) H∑
j=1

wjk
∂zj

∂xi

= f ′
(
yINk

) H∑
j=1

wjkg
′ (zINj ) ∂zINj

∂xi

= f ′
(
yINk

) H∑
j=1

wjkg
′ (zINj )

uij (10)

Subsequently, if we want to use gradient based tec
niques to minimize the error function of (9) we need∂E

∂wjk

and ∂E
∂uij

for all i, j, k which are derived next, through
repetitive use of the chain rule of differentiation.

∂E

∂wJK
= −α(tK − yK) ∂yk

∂wJK
− β

N∑
i=1

[
eKi

∂dKi

∂wJK

]

= −α(tK − yK)f ′
(
yINK

) ∂yINK
wJK

−β
N∑
i=1

[
eKi

(
f ′′
(
yINk

) ∂yINK
∂wJK

S(K, i)

+f ′
(
yINK

)
g′
(
zINJ

)
uiJ

)]
= −α(tK − yK)f ′

(
yINK

)
zJ

−β
N∑
i=1

[
eKi

(
f ′′
(
yINK

)
zJ S(K, i)

+f ′
(
yINK

)
g′
(
zINJ

)
uiJ

)]
(11)

where

eki = (ski − dki)
and

S(k, i) =
H∑
j=1

wjkg
′ (zINj )

uij .

Similarly,

∂E

∂uIJ
=

=−α
M∑
k=1

(tk − yk) ∂yk
∂uIJ

− β
M∑
k=1

N∑
i=1

[
eki

∂dki

∂uIJ

]

7
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=−α
M∑
k=1

(tk − yk)f ′
(
yINk

) ∂yINk
∂uIJ

−β
M∑
k=1

N∑
i=1

[
eki

(
f ′′
(
yINk

) ∂yINk
∂uIJ

S(k, i)

+ f ′
(
yINk

) H∑
j=1

wjk
∂

∂uIJ

(
g′
(
zINj

)
uij

)
=−α

M∑
k=1

(tk − yk)f ′
(
yINk

)
wJk

∂zJ

∂uIJ

−β
M∑
k=1

N∑
i=1

[
eki

(
f ′′
(
yINk

)
wJkg

′(zINJ )∂zINJ
∂uIJ

S(k, i)

+f ′
(
yINk

)
wJk ·(

g′′
(
zINJ

) ∂zINJ
∂uIJ

uiJ + g′
(
zINJ

) ∂uIJ
∂uIJ

))]

=−α
M∑
k=1

(tk − yk)f ′
(
yINk

)
wJkg

′ (zINJ )
xI

−β
M∑
k=1

N∑
i=1

[
eki

(
f ′′
(
yINk

)
wJkg

′ (zINJ )
xIS(k, i)

+ f ′
(
yINk

)
wJk

(
g′′
(
zINJ

)
uiJ xI + g′

(
zINJ

)))]
(12)

Note that these expressions get considerably simple
when the activation function of the output layer units are
linear. In this case,f (x) = x, f ′(x) = 1, andf ′′(x) = 0.
Therefore,

∂E

∂wJK
= −α(tK − yK)zJ

−βg′
(
zINJ

) N∑
i=1

(sKi − dKi)uiJ (13)

and

∂E

∂uIJ
= −αg′

(
zINJ

)
xI

M∑
k=1

(tk − yk)wJk

−β
M∑
k=1

N∑
i=1

ekiwJk ·(
g′′
(
zINJ

)
uiJ xI + g′

(
zINJ

))
(14)
ns
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Finally, the weight updates at every iterationt are given
by

wjk(t + 1) = wjk(t)− γ ∂E

∂wjk
(15)

and

uij (t + 1) = uij (t)− γ ∂E
∂uij

(16)

for all i = 0, · · · , N , j = 0, · · · , H , k = 1, · · · ,M. Where
γ is the learning rate and∂E

∂wjk
and ∂E

∂uij
are given by (11) and

(12) respectively (Note thati = 0 corresponds to the bias
input of a neuron). In the sequel, this will be referred to a
the Derivative Back-propagation Neural Network (DBPNN).
At this point, it is worth pointing out that apart from the
learning rateγ one needs to determine the weight to be
given to the derivative errorβ = 1−α. This is an important
factor that may affect the convergence of the algorithm a
discussed later in the paper.

5 NUMERICAL RESULTS

In this section we present some preliminary results tha
show the potential benefit of using the DBPNN training
algorithm described in equations (15) and (16).

In our first experiment we try to approximate the func-
tion y = x2 in the interval[−10,10]. For this experiment,
we use a neural network with 20 hidden units. First, we use
just three input-output pairs{(−10,100), (0,0), (10,100)}
to train a standard back-propagation neural network (BPNN
Subsequently, we added the derivatives at these three poi
and used the information to train a network using DBPNN
For this experiment we usedβ = 0.1. The outputs of the
two networks as well as the target output function are show
in Figure 1. As seen in the figure, the DBPNN approx-
imates the target function much better than the standa
BPNN. Also shown in the figure is the absolute value o
the approximation error of each network for every value
of x in [−10,10] which also demonstrates the benefit of
DBPNN.

In order to compare the generalization ability of each
network, we integrate the area under the error curve of ea
network and plot it in Figure 2 as a function of the number o
points used during the training of the two networks. As see
in the figure, DBPNN achieves much better generalizatio
than standard back-propagation neural net, especially wh
the number of training points is small.

Next we consider anM/M/1 queueing network where
we are interested in the average time that customers spe
in the systemS, as a function of the traffic intensityρ. For
this system, the IPA algorithm for determiningdS

dρ
is given

in (Cassandras 1993). Figure 3 shows the approximatio
generated by BPNN and DBPNN when both networks hav
20 hidden units and are trained with only 5 train points
8
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and for DBPNNβ = 0.01. As seen in the figure, DBPNN
again achieves a much better generalization than the standa
back-propagation network.
339
rd

Finally, Figure 4 shows that area under the generaliz
tion error for the two networks. Again, DBPNN achieve
a much better generalization than BPNN especially for
small number of training points.
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Figure 4: Area Under the Absolute Error of the NN Ap-
proximations for the Average System Time in anM/M/1
System

Note that for the second experiment we have set theβ

parameter to a very small value(β = 0.01). The reason is
that asρ approaches 1, the system time goes asymptotica
to infinity and therefore the derivative at this point become
very large. As a result, the derivative error for this poin
dominates the entire error function, so, the neural netwo
in its effort to minimize the total error, it approximates
only that derivative well, but does not approximate we
the remaining points. Furthermore, we point out that oth
factors may also play a role in the value of theβ parameter.
For example, if we have noisy estimates of the derivative
it may be preferable to also setβ to a small value in order
to avoid noise from taking over the output of the neura
network. More research is required to determined howβ
is set.

6 CONCLUSIONS

When dealing with complex systems, simulation is usual
the only alternative for performance evaluation however, it
notoriously slow, thus the need for “metamodels”. Neur
networks are considered as good function approximato
thus make good metamodel candidates. However, if
neural net is to adequately learn the functional relationsh
between the inputs and outputs of a simulation model
requires a significant number of input/output pairs. Sinc
such information can only be obtained through simulatio
it means that the training phase of the neural netwo
will be long. In this paper, we investigate the use o
sensitivity information in the training of back-propagation
neural network. Some preliminary results indicate that th
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use of sensitivity information can significantly reduce th
number of training input/output pairs required which in
turn implies that the metamodel development phase will b
expedited.

The use of sensitivity information during training of
neural networks creates several issues that need to be
dressed and are part of our future plans. First, the additi
of the derivative error in (9) makes the training objectiv
function more complex. One problem that has been o
served during our experiments is that this addition ma
create several local minima and as a result convergen
issues may arise. Furthermore, the importance associa
with the derivative errors (i.e., parameterβ) needs to be
further investigated. As mentioned earlier, this paramet
may be critical to the quality of the approximation as we
as the convergence of the training algorithm.
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