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ABSTRACT

We develop a framework for automated optimizatio
of stochastic simulation models using Response Surfa
Methodology. The framework is especially intended fo
simulation models where the calculation of the correspon
ing stochastic response function is very expensive or tim
consuming. Response Surface Methodology is frequen
used for the optimization of stochastic simulation models
a non-automated fashion. In scientific applications there
a clear need for a standardized algorithm based on Respo
Surface Methodology. In addition, an automated algorith
is less time-consuming, since there is no need to interfere
the optimization process. In our framework for automate
optimization we describe the many choices that have to
made in constructing such an algorithm.

1 INTRODUCTION

When optimizing a stochastic simulation model, one trie
to estimate the model parameters that optimize spec
stochastic output of the simulation model. In this optimiza
tion procedure, the simulation model is often considered
a black-box model (Pflug 1996) where the output of th
simulation model can be regarded as a stochastic funct
of the model parameters. In this paper we propose a fram
work for a fully automated Response Surface Methodolo
(RSM) for the optimization of stochastic simulation model
This framework is especially intended for simulation mode
where the calculation of the corresponding stochastic o
jective function is very expensive or time-consuming. Th
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simulation models that we consider only have real-value
parameters in the optimization, so we exclude strictly integ
and qualitative parameters.

RSM is a collection of statistical and mathematica
techniques useful for optimizing stochastic functions (My
ers and Montgomery 1995), not primarily in simulation. I
is frequently used for the optimization of stochastic simu
lation models (Fu 1994, Carson and Maria 1997, Kleijne
1998). This methodology is based on approximation o
the stochastic objective function by a low order polyno
mial on a small subregion of the domain. The coefficien
of the polynomial are estimated by ordinary least squar
(OLS) applied to a number of observations of the stochas
objective function. To this end, the objective function i
evaluated in an arrangement of points referred to as
experimental design (Kleijnen 1998). Based on the fitte
polynomial, the local best point is derived, which is use
as a current estimator of the optimum and as the cen
point of a new region of interest (Fu 1994), where aga
the stochastic objective function is approximated by a lo
order polynomial.

There is a vast amount of papers and books on RSM. F
extensive information on various aspects of RSM we ref
to Box and Wilson (1951), Box, Hunter and Hunter (1978
Box and Draper (1987), Myers and Montgomery (1995
and Khuri and Cornell (1996). Hood and Welch (1993
give an outline of RSM when applied to non-automate
optimization of simulation models. In such non-automate
optimization, RSM is an interactive process in which on
gradually gains understanding of the nature of the stochas
objective function. Based on these insights, the algorith
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can be adapted during the optimization exercise. In an au
mated RSM algorithm, however, human intervention durin
the optimization process is excluded. A good automat
RSM algorithm should therefore include some degree
self-correction mechanisms (Box and Liu 1999).

The establishment of a clear and consistent RSM op
mization algorithm is of significant importance for its use
as a tool in scientific applications, e.g. , for estimation o
model parameters, where results should be reproducible a
derived via a clear method. A complete and clear definitio
of all steps and choices in a RSM algorithm is also necessa
for automated optimization where all choices concerning th
algorithm have to be made at the outset of an applicatio
Automated optimization is less time-consuming, since the
is no need to interfere in this optimization process. Th
is an advantage in large-scale time-consuming applicatio
However, there is no consensus about such a standard R
algorithm.

For the optimization of stochastic simulation model
several methods can be used, such as RSM, the Nel
and Mead simplex method (Neddermeijer et al. 1999) a
Simultaneous Perturbation Stochastic Approximation (F
and Hill 1996). There are surprisingly few papers that sy
tematically compare the performances of these optimizati
methods. Such a comparison clearly requires a standardi
RSM algorithm.

Smith (1976) was the first to describe an automate
RSM program, without elaborating on the choices that a
made within the RSM algorithm used in this program. Josh
Sherali and Tew (1998) describe an enhanced algorithm
RSM, and compare this algorithm with a standard RS
algorithm, again without detailing this standard algorithm
In this paper we will propose a framework for a RSM al
gorithm for automated simulation optimization. Obviously
this framework can also be used for non-automated op
mization. We will discuss the choices that have to be ma
when constructing a standard RSM algorithm, and we w
mention references.

2 THE FRAMEWORK

Without loss of generality, we assume that the optimizatio
is a minimization problem. Mathematically, this problem
can be described by

minimize f : D→ IR, D ⊆ IRk

wheref (ξ1, ..., ξk) = IE (F (ξ1, ..., ξk)); F (ξ1, ..., ξk) de-
notes the stochastic output for given input{ξ1, ..., ξk}, and
IE (F (ξ1, ..., ξk)) denotes its expected value. When optimiz
ing a simulation model, the argumentsξ1, ..., ξk represent
the parameters of the simulation model. In RSM, the p
rameters of the simulation model are usually called facto
whereas the stochastic output is called the response of
130
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simulation model. It is assumed that a screening phas
in which factors that are considered unimportant are elim
inated from the optimization problem, as well as possibl
transformations of the factors and the response, have alrea
taken place.

Usually, a RSM algorithm comprises two phases. In
the first phase the response surface function is approximat
by first-order polynomials, until a polynomial is fitted that
shows significant lack-of-fit, or until there is no direction
of improved response anymore (Cochran and Cox 1962
In the second phase the objective function is approximate
by a second-order polynomial (Fu 1994). On the bas
of the various extensions and modifications of this class
algorithm that can be found in the literature, we constructe
a framework for an automated RSM algorithm, see Figur
1. The various elements of this framework are describe
in the remainder of this paper.

In each iterationn, n ≥ 1, we consider a small subregion
of the domain, which is called the region of interest and i
given by the k-dimensional rectangle[

ln1, u
n
1

]× ...× [lnk , unk]
This region can be described by a center point

ξni =
lni + uni

2
, i = 1, ..., k

and step sizes

cni =
(
uni − lni

)
/2, i = 1, ..., k

At the start of the algorithm, an initial starting point and
initial step sizes should be given. Choosing the initial ste
sizes at the start of the algorithm should be done wit
extreme caution, as we will discuss below.

A. Approximate the simulation response function in
the current region of interest by a first-order model. The
first-order model is given by

y = α0 +
k∑
i=1

αiξi + ε

We assume that the additive errorε has a normal distribution
with mean 0 and constant varianceσ 2. To increase the
numerical accuracy in estimating the regression coefficient
the factors are coded, which gives the coded variablesxi,

i = 1, ..., k:

xi = ξi − ξni
cni

=⇒ ξi = cni xi + ξni
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A) Approximate the response

surface function locally by a

first-order model

B) Test the first-order

model for adequacy

C) Perform a line search

in the steepest descent

direction

E) Approximate the response

surface function locally

by a second-order model

F) Test the second-order

model for adequacy

G) Solve the inadequacy of

the second-order model

H) Perform canonical analysis

I) Perform ridge analysis

J) Accept the stationary point

as the center point of the

new region of interest

Start

K) Determine a steepest�

descent direction

D) Solve the inadequacy of

the first-order model

Figure 1: Framework for an Automated RSM Algorithm
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and the coded first-order model:

Y = β0 +
k∑
i=1

βixi + ε

Estimators of the regression coefficients{β0, β1, ..., βk} are
determined by using OLS and are denoted by{b0, b1, ..., bk}.
To this end, the objective function is evaluated in the poin
of an experimental design, which is a specific arrangem
of points in the current region of interest. Although there a
many designs to choose from, usually a fractional two-lev
factorial design of resolution-III (Kleijnen 1998) is used
often augmented by the center point of the current reg
of interest (Myers and Montgomery 1995). This design
orthogonal, which means that the variance of the predic
response in the region of interest is minimal, and that t
regression coefficients can be assessed independently (K
and Cornell 1996). Moreover, resolution-III designs giv
unbiased estimators of the regression coefficients of a fi
order polynomial (Kleijnen 1998), and are practical sinc
the number of design points is small compared to oth
types of two-level factorial designs. Another advantage
that this type of design can quite easily be augmented
derive a second-order design. If the design is not within t
domain D, then it is moved into this region (Smith 1976

B. Test the first-order model for adequacy. Before
using the first-order model to move into a direction o
improved response, it should be tested if the estimated fi
order model adequately describes the behaviour of the
sponse in the current region of interest. If the true respon
shows interaction between the factors or pure curvatu
the estimated first-order model will likely show lack-of
fit, which can be assessed from the analysis of varian
(ANOVA) table. Testing for lack of fit requires that the
resolution-III design used for estimating the regression co
ficients of the first-order model is not saturated, i.e. the to
number of observations should be larger than the num
of regression coefficients. Moreover, multiple observatio
are needed in the center point of the region of interest (B
and Draper 1987). Alternatively, one could apply cros
validation (Kleijnen 1998). Furthermore, it could happe
that although the first-order model does fit well, it is no
possible to determine a significant direction of improve
response from this model. This occurs when the estima
regression coefficients are not significantly different fro
zero, which can also be assessed using the ANOVA tab

At the start of the algorithm it should be decided whic
of these tests to use, i.e. when to accept the first-or
model. For example, if there is interaction between t
factors but no pure curvature, one could still decide to acc
the first-order model. The decisions include choosing t
significance levels for the tests involved.

C. Perform a line search in the steepest descent di-
rection. If the first-order model is accepted, then this mod
132
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is used for determining the direction where improvemen
of the simulation response is expected. The steepest d
scent direction is given by(−b1, ...,−bk). A line search
is performed from the center point of the current region
of interest in this direction to find a point of improved re-
sponse. This point is taken as the estimator of the optimu
of the simulation response function in thenth iteration, and
is used as the center point of the region of interest in th

(n+ 1)th iteration, i.e.
{
ξn+1

1 , ..., ξn+1
k

}
.

In most RSM literature, line search is applied as follows
(Box and Draper 1987, Myers and Montgomery 1995, Khur
and Cornell 1996). First, increments(11, ..., 1k) along the
steepest descent direction are chosen, where11÷...÷1k =
b1÷ ...÷ bk. These increments are usually determined b
subjectively choosing amost importantfactor, e.g. ,ξj .
Alternatively, one could objectively choose a most importan
factor by determiningj such thatj = arg maxi=1,...,k |bi |.
In both cases, the increments are set to

1i = −bi|bj | , i = 1, ..., k

units in the coded variables. Another option is to se
the increments(11, ..., 1k) equal to the distance from the
center point to the point of intersection of the direction
of steepest descent and the sphere given by

∑k
i=11

2
i = 1.

(Neddermeijer et al. 1999). Themth line search point is
given by

{
ξn1 +m11c

n
1, ..., ξ

n
k +m1kcnk

}
. It follows that

the initial step sizes chosen at the start of the algorithm
have a direct effect on the magnitude of the movement o
the factors, whereas it has no effect on the direction o
steepest descent (Myers and Montgomery 1995). As so
as a boundary of the domain D is crossed, the line sear
is continued along the projection of the search direction o
this boundary (Smith 1976).

To end this type of line search, a stopping rule ha
to be chosen. The usual recommendation is to stop th
line search when no further improvement is observed (De
Castillo 1997). The most straightforward rule ends the lin
search when an observed value of the simulation respon
function is higher than the preceding observation, i.e. s
ξn+1
i equal to line search pointm if line search pointm+1

is the first line search point for which no improvement
was found. This rule, however, is sensitive to the nois
of the response surface function, so the new center poi
is probably not optimal. Therefore, Del Castillo (1997)
compares this stopping rule with a number of rules tha
do take the noise into account. These rules include th
2-in-a-row and the 3-in-a-row stopping rules, which end th
line search when 2 or 3 consecutive observed values of t
simulation response function are higher than the precedin
observation. In the Myers and Khuri stopping rule, howeve
the line search ends when an observed value of the simulati
response function is significantly higher than the precedin
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observation. Del Castillo proposes a stopping rule wi
variable increments that is based on recursive estimation
second-order polynomials along the search direction. Bas
on simulated line searches, Del Castillo finds that both th
recursive procedure and the Myers and Khuri rule perfor
better than then-in-a-row stopping rules.

Fu (1994) describes another type of line search a
gorithms where a set of experiments along the steep
descent direction is performed. From these experimen
a one-dimensional second-order polynomial is estimate
This polynomial is optimized to derive the next center poin
ξn+1
i . Safizadeh and Signorile (1994) mention a simila

line search algorithm. In addition, Joshi, Sherali and Te
(1998) introduce a line search algorithm which applies gra
ent deflection methods to prevent zigzagging of the steep
descent directions in multiple iterations.

D. Solve the inadequacy of the first-order model.If
the first-order model is not accepted, then either there
some evidence of pure curvature or interaction between
factors in the current region of interest, or the steepest desc
direction cannot be discerned from zero. Usually, this
solved by approximating the simulation response functio
in the region of interest by a second-order polynomia
However, the optimization algorithm becomes less efficie
especially if this occurs very early during the optimizatio
exercise. Therefore, an alternative solution is to reduce
size of the region of interest by decreasing the step siz
cni , i = 1, ..., k. In this way this region can possibly becom
small enough to ensure that a first-order approximation
an adequate local representation of the simulation respo
function. Another solution is to increase the simulation siz
used to evaluate a design point or to increase the num
of replicated observations done in the design points. Th
may ensure that indeed a significant direction of steep
descent is found.

At the start of the algorithm it should be decided whic
actions will be taken when the first-order model is rejecte
Different actions can be taken depending on the outco
of the tests and the stage of the optimization exercise. F
example, depending on the p-value found for the lack-of-
test, one could decide to apply a second-order approximat
or to decrease the size of the region of interest.

E. Approximate the objective function in the current
region of interest by a second-order model.The coded
second-order model is given by:

Y = β0 +
k∑
i=1

βixi +
k∑
i=1

k∑
j=i

βi,j xixj + ε

The regression coefficients of the second-order model
again determined by using OLS applied to observatio
performed in an experimental design. The most popu
class of second-order designs is the central composite des
133
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(CCD) (Myers and Montgomery 1995). This design can
be easily constructed by augmenting the fractional factoria
design that was used for estimating the first-order mode
It is common to construct the CCD in such a way that i
is rotatable, which means that the variance of the predicte
response remains constant at all points which are equidista
to the center point of the current region of interest (Khuri an
Cornell 1996). Furthermore, the CCD can be transforme
such that it is orthogonal by choosing a specific numbe
of replicated observations in the center point of the curren
region of interest (Khuri and Cornell 1996, p.123). If the
design is not within the domain D, then it is moved into
this region (Smith 1976).

F. Testing the second-order model for adequacy.
Similar to the first-order model, it should be tested if the
estimated second-order model adequately describes the
haviour of the response in the current region of interes
before using this model.

G. Solve the inadequacy of the second-order model.
If the second-order model is found not to be adequate, the
one can reduce the size of the region of interest (Josh
Sherali and Tew 1998) or increase the simulation size use
in evaluating a design point. In RSM it is not customary to
fit a higher than second-order polynomial (Kleijnen 1998)

H. Perform canonical analysis. If the second-order
model is found to be adequate, then canonical analysis
performed to determine the location and the nature of th
stationary point of the second-order model. The estimate
second-order approximation can be written as follows:

Ŷ = β0 + x′b+ x′Bx

where

b = (b1, ..., bk)

B =


b1,1 b1,2/2 · · · b1,k/2

b2,2 · · · b2,k/2
. . .

...

sym. bk,k


The stationary points of the second-order polynomial is
determined by

s= −1

2
B−1b

Let E be the matrix of normalized eigenvectors ofB and
let v1, ..., vk be the eigenvalues ofB. If all eigenvalues are
positive (negative), then the quadratic surface has a minimu
(maximum) at the stationary points. If the eigenvalues have
mixed signs, then the stationary points is a saddle point.

I. Perform ridge analysis. It is not advisable to ex-
trapolate the second-order polynomial beyond the curre
region of interest (Myers and Montgomery 1995). There
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fore, if the stationary point is a minimum which lies outsid
the current region of interest, the stationary point is n
accepted as the center of the next region of interest.
the stationary point is a maximum or a saddle point, th
the stationary point is rejected as well. In these cas
ridge analysisis performed, which means a search for
new stationary pointsR on a given radiusR such that the
second order model has a minimum at this stationary po
(Myers and Montgomery 1995). Using Lagrange analys
with multiplier µ, this stationary point is given by

(B− µI ) sR = −1

2
b

and µ < mini vi and
√

s′RsR = R should hold. We can
write

R2 = s′RsR =
k∑
i=1

(
e′ib

2 (vi − µ)
)2

whereei is the eigenvector corresponding to the ith eigen-
valuevi .

A choice for the radiusR has to be made. For example
one could consider the radius of the circumscribed sph
of the region of interest(R = √2), which means that we
have to findµ < mini vi such that

k∑
i=1

(
e′ib

2 (vi − µ)
)2

= 2

Standard numerical methods for finding the root of a
equation can be used to determineµ.

J. Accept the stationary point. The stationary point
will be used as the center point of the next region
interest. It should be decided whether a first-order or
second-order model is used to approximate the simulat
response surface in this region. These decisions can
made dependent on the results of the canonical analy
For example, if a minimum was found, it could be useful
explore a region around this minimum with a new secon
order approximation. On the other hand, if a maximu
or a saddle point was found, the optimum could still b
located far away from the current region of interest. In th
case, approximating this region with a first-order model a
consequently performing a line search would be preferab
Allowing this return to the first phase of the RSM algorithm
is a powerful self-correction mechanism (Neddermeijer
al. 1999).

K. Determine a steepest descent direction from the
second-order model.Joshi, Sherali and Tew (1998) intro
duced an enhanced RSM algorithm, in which they use
gradient of the second-order model in the center point
the current region and the results of the canonical analy
134
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to determine a direction of steepest descent. Next, th
perform a line search using this direction, resulting in
new center of a region of interest. In this region the simula
tion response surface will be approximated by a first-ord
model.

Stopping criterion. In the RSM literature, it is often
proposed to end the algorithm after fitting only one secon
order polynomial (Fu 1994, Kleijnen 1998). However, we
do not recommend this strategy for two reasons. Fir
of all, this strategy assumes that a minimum inside th
current region is found, and therefore excludes the cases
which either a minimum outside the current region is foun
or a maximum or a saddle point is found. Furthermore
Greenwood, Rees and Siochi (1998) find that even fo
simple simulation response surfaces, first-order models c
be inappropriate over a large area of the domain. Dependi
on the choices made in the algorithm, this means that t
optimization can turn to the second-order phase quite early
the optimization exercise. Consequently, if the optimizatio
algorithm ends after only one second-order approximatio
it is likely that the best point of the optimization is located
far from the optimum.

Therefore, we recommend ending the optimization ex
ercise if(i) the estimated optimal simulation response valu
does not improve sufficiently anymore, if(ii) the region
of interest becomes too small, or, in case there are budg
constraints, if(iii) a fixed maximum number of evaluations
have been performed. Next, a confidence interval about t
response at the estimator for the optimum and the locati
of this estimator can be determined, see e.g. , Carter et
(1984).

We want to underline the fact that the Nelder and Mea
simplex method is a local search method. No guarant
is given for finding the global optimum. Therefore, when
optimizing a stochastic objective function, multistart using
multiple starting points and / or multiple searches from th
same starting point should be considered.

3 CONCLUSION AND FUTURE WORK

In this paper we proposed a framework for the optimizatio
of simulation models using Response Surface Methodolog
In the RSM literature, this methodology is usually applied
in a non-automated fashion, and much work is done o
improving separate parts of RSM. This paper is the firs
attempt to define a clear, detailed and consistent RS
algorithm. The framework is especially useful for automate
optimization, in which all the settings of the algorithm have
to be chosen at the outset of the optimization proces
Based on this framework, additional research can be do
on comparing the different settings of the RSM algorithm
for automated optimization of simulation models. We wil
show the results of this research during the 2000 Wint
Simulation Conference. Furthermore, the question remai
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how the RSM algorithm compares to other algorithms suc
as the Nelder and Mead simplex method and Simultaneo
Perturbation Stochastic Approximation.
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