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ABSTRACT simulation models that we consider only have real-valued
parameters in the optimization, so we exclude strictly integer
We develop a framework for automated optimization and qualitative parameters.

of stochastic simulation models using Response Surface RSM is a collection of statistical and mathematical

Methodology. The framework is especially intended for techniques useful for optimizing stochastic functions (My-

simulation models where the calculation of the correspond- ers and Montgomery 1995), not primarily in simulation. It

ing stochastic response function is very expensive or time- is frequently used for the optimization of stochastic simu-
consuming. Response Surface Methodology is frequently lation models (Fu 1994, Carson and Maria 1997, Kleijnen
used for the optimization of stochastic simulation models in 1998). This methodology is based on approximation of
a non-automated fashion. In scientific applications there is the stochastic objective function by a low order polyno-

a clear need for a standardized algorithm based on Responsemial on a small subregion of the domain. The coefficients

Surface Methodology. In addition, an automated algorithm
is less time-consuming, since there is no need to interfere in
the optimization process. In our framework for automated
optimization we describe the many choices that have to be
made in constructing such an algorithm.

1 INTRODUCTION

When optimizing a stochastic simulation model, one tries
to estimate the model parameters that optimize specific
stochastic output of the simulation model. In this optimiza-
tion procedure, the simulation model is often considered as
a black-box model (Pflug 1996) where the output of the

of the polynomial are estimated by ordinary least squares
(OLS) applied to a number of observations of the stochastic
objective function. To this end, the objective function is
evaluated in an arrangement of points referred to as an
experimental design (Kleijnen 1998). Based on the fitted
polynomial, the local best point is derived, which is used
as a current estimator of the optimum and as the center
point of a new region of interest (Fu 1994), where again
the stochastic objective function is approximated by a low
order polynomial.

There is a vast amount of papers and books on RSM. For
extensive information on various aspects of RSM we refer
to Box and Wilson (1951), Box, Hunter and Hunter (1978),

simulation model can be regarded as a stochastic function Box and Draper (1987), Myers and Montgomery (1995)
of the model parameters. In this paper we propose a frame- and Khuri and Cornell (1996). Hood and Welch (1993)
work for a fully automated Response Surface Methodology give an outline of RSM when applied to non-automated
(RSM) for the optimization of stochastic simulation models. optimization of simulation models. In such non-automated
This framework is especially intended for simulation models optimization, RSM is an interactive process in which one
where the calculation of the corresponding stochastic ob- gradually gains understanding of the nature of the stochastic
jective function is very expensive or time-consuming. The objective function. Based on these insights, the algorithm
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can be adapted during the optimization exercise. In an auto- simulation model. It is assumed that a screening phase,
mated RSM algorithm, however, human intervention during in which factors that are considered unimportant are elim-
the optimization process is excluded. A good automated inated from the optimization problem, as well as possible
RSM algorithm should therefore include some degree of transformations of the factors and the response, have already
self-correction mechanisms (Box and Liu 1999). taken place.

The establishment of a clear and consistent RSM opti- Usually, a RSM algorithm comprises two phases. In
mization algorithm is of significant importance for its use the first phase the response surface function is approximated
as a tool in scientific applications, e.g. , for estimation of by first-order polynomials, until a polynomial is fitted that
model parameters, where results should be reproducible andshows significant lack-of-fit, or until there is no direction
derived via a clear method. A complete and clear definition of improved response anymore (Cochran and Cox 1962).
of all steps and choices in a RSM algorithm is also necessary In the second phase the objective function is approximated
for automated optimization where all choices concerning the by a second-order polynomial (Fu 1994). On the basis
algorithm have to be made at the outset of an application. of the various extensions and modifications of this classic
Automated optimization is less time-consuming, since there algorithm that can be found in the literature, we constructed
is no need to interfere in this optimization process. This a framework for an automated RSM algorithm, see Figure
is an advantage in large-scale time-consuming applications. 1. The various elements of this framework are described

However, there is no consensus about such a standard RSMin the remainder of this paper.

algorithm.
For the optimization of stochastic simulation models

Ineachiteratiom, n > 1, we consider a small subregion
of the domain, which is called the region of interest and is

several methods can be used, such as RSM, the Neldergiven by the k-dimensional rectangle

and Mead simplex method (Neddermeijer et al. 1999) and
Simultaneous Perturbation Stochastic Approximation (Fu
and Hill 1996). There are surprisingly few papers that sys-
tematically compare the performances of these optimization

4.

This region can be described by a center point

u’ﬂ X ... X [l,'(', uZ]

methods. Such a comparison clearly requires a standardized

RSM algorithm.

Smith (1976) was the first to describe an automated
RSM program, without elaborating on the choices that are
made within the RSM algorithm used in this program. Joshi,
Sherali and Tew (1998) describe an enhanced algorithm for
RSM, and compare this algorithm with a standard RSM
algorithm, again without detailing this standard algorithm.
In this paper we will propose a framework for a RSM al-
gorithm for automated simulation optimization. Obviously,
this framework can also be used for non-automated opti-
mization. We will discuss the choices that have to be made
when constructing a standard RSM algorithm, and we will
mention references.

2 THE FRAMEWORK

Without loss of generality, we assume that the optimization
is a minimization problem. Mathematically, this problem
can be described by

minimize f : D - R, D € Rf

where f (&1, ..., &) = E(F (&1, ..., &)); F (&1, ..., &) de-
notes the stochastic output for given ind#t, ..., &}, and

E (F (&1, ..., &)) denotes its expected value. When optimiz-
ing a simulation model, the argumerds ..., & represent
the parameters of the simulation model. In RSM, the pa-
rameters of the simulation model are usually called factors,

whereas the stochastic output is called the response of the
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and step sizes

ol = (u:’ — ll") /2,i=1 ..k
At the start of the algorithm, an initial starting point and
initial step sizes should be given. Choosing the initial step
sizes at the start of the algorithm should be done with
extreme caution, as we will discuss below.

A. Approximate the simulation response function in
the current region of interest by a first-order model. The
first-order model is given by

k
y =Olo+ZOli§i +e
i=1

We assume that the additive erednas a normal distribution
with mean 0 and constant variane€. To increase the
numerical accuracy in estimating the regression coefficients,
the factors are coded, which gives the coded variables
i=1 ..k

& — &
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Figure 1: Framework for an Automated RSM Algorithm
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and the coded first-order model:

k
Y =fot+ ) Bixite

i=1

Estimators of the regression coefficiefis, 81, ..., B¢} are
determined by using OLS and are denotediy b1, ..., by }.

To this end, the objective function is evaluated in the points
of an experimental design, which is a specific arrangement
of points in the current region of interest. Although there are
many designs to choose from, usually a fractional two-level
factorial design of resolution-IIl (Kleijnen 1998) is used,
often augmented by the center point of the current region
of interest (Myers and Montgomery 1995). This design is
orthogonal, which means that the variance of the predicted

is used for determining the direction where improvement
of the simulation response is expected. The steepest de-
scent direction is given by—b1, ..., —b). A line search
is performed from the center point of the current region
of interest in this direction to find a point of improved re-
sponse. This point is taken as the estimator of the optimum
of the simulation response function in thth iteration, and
is used as the center point of the region of interest in the
(n + Dth iteration, i.e.{gf“, e EPTLE

In most RSM literature, line search is applied as follows
(Box and Draper 1987, Myers and Montgomery 1995, Khuri
and Cornell 1996). First, incrementay, ..., A;) along the
steepest descent direction are chosen, where... -~ Ay =
b1+ ... = b;. These increments are usually determined by
subjectively choosing anost importantfactor, e.g. ,&;.

response in the region of interest is minimal, and that the Alternatively, one could objectively choose a most important
regression coefficients can be assessed independently (Khurifactor by determiningj such thatj = argmax=1,..x |:l.

and Cornell 1996). Moreover, resolution-lll designs give
unbiased estimators of the regression coefficients of a first-
order polynomial (Kleijnen 1998), and are practical since
the number of design points is small compared to other
types of two-level factorial designs. Another advantage is
that this type of design can quite easily be augmented to
derive a second-order design. If the design is not within the
domain D, then it is moved into this region (Smith 1976).
B. Test the first-order model for adequacy. Before
using the first-order model to move into a direction of
improved response, it should be tested if the estimated first-

In both cases, the increments are set to

_bi

i=_7i=17
bl

v k

units in the coded variables. Another option is to set
the incrementgAy, ..., Ag) equal to the distance from the
center point to the point of intersection of the direction
of steepest descent and the sphere givelﬂ;':‘;gl A,.Z =1.
(Neddermeijer et al. 1999). Thath line search point is
given by {&' + mA1ct, ... & + mArc}}. It follows that

order model adequately describes the behaviour of the re- the initial step sizes chosen at the start of the algorithm
sponse in the current region of interest. If the true response have a direct effect on the magnitude of the movement of
shows interaction between the factors or pure curvature, the factors, whereas it has no effect on the direction of
the estimated first-order model will likely show lack-of- Steepest descent (Myers and Montgomery 1995). As soon
fit, which can be assessed from the analysis of variance @s & boundary of the domain D is crossed, the line search
(ANOVA) table. Testing for lack of fit requires that the is continued along the projection of the search direction on
resolution-I1l design used for estimating the regression coef- this boundary (Smith 1976).
ficients of the first-order model is not saturated, i.e. the total To end this type of line search, a stopping rule has
number of observations should be larger than the number t0 be chosen. The usual recommendation is to stop the
of regression coefficients. Moreover, multiple observations line search when no further improvement is observed (Del
are needed in the center point of the region of interest (Box Castillo 1997). The most straightforward rule ends the line
and Draper 1987). Alternatively, one could apply cross- search when an observed value of the simulation response
validation (Kleijnen 1998). Furthermore, it could happen function is higher than the preceding observation, i.e. set
that although the first-order model does fit well, it is not & " equal to line search point if line search pointx + 1
possible to determine a significant direction of improved is the first line search point for which no improvement
response from this model. This occurs when the estimated Was found. This rule, however, is sensitive to the noise
regression coefficients are not significantly different from Of the response surface function, so the new center point
zero, which can also be assessed using the ANOVA table. is probably not optimal. Therefore, Del Castillo (1997)
At the start of the algorithm it should be decided which compares this stopping rule with a number of rules that
of these tests to use, i.e. when to accept the first-order do take the noise into account. These rules include the
model. For example, if there is interaction between the 2-in-a-row and the 3-in-a-row stopping rules, which end the
factors but no pure curvature, one could still decide to accept line search when 2 or 3 consecutive observed values of the

the first-order model. The decisions include choosing the Simulation response function are higher than the preceding
significance levels for the tests involved. observation. Inthe Myers and Khuri stopping rule, however,

C. Perform a line search in the steepest descent di-  the line search ends when an observed value of the simulation
rection. If the first-order model is accepted, then this model response function is significantly higher than the preceding
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observation. Del Castillo proposes a stopping rule with (CCD) (Myers and Montgomery 1995). This design can
variable increments that is based on recursive estimation of be easily constructed by augmenting the fractional factorial
second-order polynomials along the search direction. Based design that was used for estimating the first-order model.
on simulated line searches, Del Castillo finds that both this It is common to construct the CCD in such a way that it
recursive procedure and the Myers and Khuri rule perform is rotatable, which means that the variance of the predicted
better than then-in-a-row stopping rules. response remains constant at all points which are equidistant
Fu (1994) describes another type of line search al- to the center point of the current region of interest (Khuri and
gorithms where a set of experiments along the steepest Cornell 1996). Furthermore, the CCD can be transformed
descent direction is performed. From these experiments, such that it is orthogonal by choosing a specific number
a one-dimensional second-order polynomial is estimated. of replicated observations in the center point of the current
This polynomial is optimized to derive the next center point region of interest (Khuri and Cornell 1996, p.123). If the
é;‘i"”. Safizadeh and Signorile (1994) mention a similar design is not within the domain D, then it is moved into

line search algorithm. In addition, Joshi, Sherali and Tew
(1998) introduce a line search algorithm which applies gradi-
ent deflection methods to prevent zigzagging of the steepest
descent directions in multiple iterations.

D. Solve the inadequacy of the first-order model.If
the first-order model is not accepted, then either there is
some evidence of pure curvature or interaction between the

this region (Smith 1976).

F. Testing the second-order model for adequacy.
Similar to the first-order model, it should be tested if the
estimated second-order model adequately describes the be-
haviour of the response in the current region of interest
before using this model.

G. Solve the inadequacy of the second-order model.

factorsinthe currentregion of interest, or the steepest descentlf the second-order model is found not to be adequate, then

direction cannot be discerned from zero. Usually, this is
solved by approximating the simulation response function
in the region of interest by a second-order polynomial.
However, the optimization algorithm becomes less efficient
especially if this occurs very early during the optimization
exercise. Therefore, an alternative solution is to reduce the
size of the region of interest by decreasing the step sizes
c!,i =1,.., k. Inthis way this region can possibly become
small enough to ensure that a first-order approximation is

an adequate local representation of the simulation response

function. Another solution is to increase the simulation size

used to evaluate a design point or to increase the number
of replicated observations done in the design points. This
may ensure that indeed a significant direction of steepest
descent is found.

At the start of the algorithm it should be decided which
actions will be taken when the first-order model is rejected.
Different actions can be taken depending on the outcome
of the tests and the stage of the optimization exercise. For
example, depending on the p-value found for the lack-of-fit
test, one could decide to apply a second-order approximation
or to decrease the size of the region of interest.

E. Approximate the objective function in the current
region of interest by a second-order model.The coded
second-order model is given by:

k ko k
Y=,30+Z,3,'x,’ +22ﬂi’jxixl+e

i=1 i=1 j=i
The regression coefficients of the second-order model are
again determined by using OLS applied to observations

performed in an experimental design. The most popular

class of second-order designs is the central composite design
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one can reduce the size of the region of interest (Joshi,
Sherali and Tew 1998) or increase the simulation size used
in evaluating a design point. In RSM it is not customary to
fit a higher than second-order polynomial (Kleijnen 1998).
H. Perform canonical analysis. If the second-order
model is found to be adequate, then canonical analysis is
performed to determine the location and the nature of the
stationary point of the second-order model. The estimated
second-order approximation can be written as follows:

Y = Bo+ x'b + x'Bx

where

b = (b,...,b)
bi1  b12/2 b1/2
b2 box/2
B = ,
sym. bk k

The stationary poins of the second-order polynomial is
determined by
1
=72
Let E be the matrix of normalized eigenvectors Bfand
let vy, ..., v be the eigenvalues @&. If all eigenvalues are
positive (negative), then the quadratic surface has a minimum
(maximum) at the stationary poist If the eigenvalues have
mixed signs, then the stationary pomis a saddle point.
I. Perform ridge analysis. It is not advisable to ex-
trapolate the second-order polynomial beyond the current
region of interest (Myers and Montgomery 1995). There-

B~1b
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fore, if the stationary point is a minimum which lies outside to determine a direction of steepest descent. Next, they
the current region of interest, the stationary point is not perform a line search using this direction, resulting in a
accepted as the center of the next region of interest. If new center of a region of interest. In this region the simula-
the stationary point is a maximum or a saddle point, then tion response surface will be approximated by a first-order

the stationary point is rejected as well. In these cases,
ridge analysisis performed, which means a search for a
new stationary poinsg on a given radiusR such that the
second order model has a minimum at this stationary point
(Myers and Montgomery 1995). Using Lagrange analysis
with multiplier ., this stationary point is given by

1
(B—ul)sg = —5b

and u < min; v; and
write

SgkSk = R should hold. We can

)2
whereeg; is the eigenvector corresponding to tHe eigen-
valuev;.

A choice for the radiu® has to be made. For example,
one could consider the radius of the circumscribed sphere

of the region of interestR = +/2), which means that we
have to findu < min; v; such that

k ob 2
— 2 ) =2
Z <2(Ui —M))

i=1

k
€b
R*=Spsp =) (m

i=1

Standard numerical methods for finding the root of an
equation can be used to determine
J. Accept the stationary point. The stationary point

model.

Stopping criterion. In the RSM literature, it is often
proposed to end the algorithm after fitting only one second
order polynomial (Fu 1994, Kleijnen 1998). However, we
do not recommend this strategy for two reasons. First
of all, this strategy assumes that a minimum inside the
current region is found, and therefore excludes the cases in
which either a minimum outside the current region is found
or a maximum or a saddle point is found. Furthermore,
Greenwood, Rees and Siochi (1998) find that even for
simple simulation response surfaces, first-order models can
be inappropriate over a large area of the domain. Depending
on the choices made in the algorithm, this means that the
optimization can turn to the second-order phase quite early in
the optimization exercise. Consequently, if the optimization
algorithm ends after only one second-order approximation,
it is likely that the best point of the optimization is located
far from the optimum.

Therefore, we recommend ending the optimization ex-
ercise if(i) the estimated optimal simulation response value
does not improve sufficiently anymore, (i) the region
of interest becomes too small, or, in case there are budget
constraints, if(iii) a fixed maximum number of evaluations
have been performed. Next, a confidence interval about the
response at the estimator for the optimum and the location
of this estimator can be determined, see e.g. , Carter et al.
(1984).

We want to underline the fact that the Nelder and Mead
simplex method is a local search method. No guarantee
is given for finding the global optimum. Therefore, when

will be used as the center point of the next region of qptimizing a stochastic objective function, multistart using

interest. It should be decided whether a first-order or a mytiple starting points and / or multiple searches from the
second-order model is used to approximate the simulation sgme starting point should be considered.

response surface in this region. These decisions can be
made dependent on the results of the canonical analysis.

For example, if a minimum was found, it could be useful to
explore a region around this minimum with a new second-
order approximation. On the other hand, if a maximum
or a saddle point was found, the optimum could still be
located far away from the current region of interest. In this
case, approximating this region with a first-order model and
consequently performing a line search would be preferable.
Allowing this return to the first phase of the RSM algorithm
is a powerful self-correction mechanism (Neddermeijer et
al. 1999).

K. Determine a steepest descent direction from the
second-order model.Joshi, Sherali and Tew (1998) intro-
duced an enhanced RSM algorithm, in which they use the
gradient of the second-order model in the center point of
the current region and the results of the canonical analysis
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3 CONCLUSION AND FUTURE WORK

In this paper we proposed a framework for the optimization
of simulation models using Response Surface Methodology.
In the RSM literature, this methodology is usually applied
in a non-automated fashion, and much work is done on
improving separate parts of RSM. This paper is the first
attempt to define a clear, detailed and consistent RSM
algorithm. The framework is especially useful for automated
optimization, in which all the settings of the algorithm have
to be chosen at the outset of the optimization process.
Based on this framework, additional research can be done
on comparing the different settings of the RSM algorithm
for automated optimization of simulation models. We will
show the results of this research during the 2000 Winter
Simulation Conference. Furthermore, the question remains
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