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ABSTRACT excuse omissions, which are unintentional). Nor do we at-
tempt to review the rapidly expanding use of Markov Chain
This tutorial describes some ways that Bayesian methods Monte Carlo (MCMC) simulation to implement Bayesian
address problems that arise during simulation studies. This inference, which use applies simulation to address compu-
includes quantifying uncertainty about input distributions tational issues in Bayesian inference (Gilks, Richardson,
and parameters, sensitivity analysis, and the selection of and Spiegelhalter 1996; Carlin and Louis 1996).
the best of several simulated alternatives. Focus is on Although the article deals with Bayesian methods for
illustrating the main ideas and their relevance to practical simulation, many of the ideas apply to other areas. Tech-
problems. Numerous citations for both introductory and niques to model input parameter uncertainty apply equally
more advanced material provide a launching pad into the well to simulations of customer arrivals to a service fa-

Bayesian literature. cility and to an analytical study of the M/G/1/K queue.
And statistical selection procedures apply both to studies to
1 INTRODUCTION identify the best simulated system, and to studies to identify

the best disease therapy, be it medical or agricultural. Ex-
It is easy to argue that Bayesian methods don't apply at cellent references to various aspects of Bayesian methods,
all to simulation, if simulation is taken to be a numerical subjective probability, and decision analysis in general, not
analysis tool for studying complex systems. However, if just as they apply to simulation, include de Groot (1970),
simulation is considered to be an analytical tool that informs Lindley (1972), Savage (1972), Winkler (1972), Berger
decisions, then Bayesian methods are relevant and appro-(1985), de Finetti (1990), and Bernardo and Smith (1994).
priate. Bayesian methods for simulation input and output References that address issues that seem to be of more
uncertainty have been around for some time, but have beeninterest at present to simulation than to other areas, such as
increasingly applied and developed in recent years (a par- shifted input distributions and common random numbers,
tial list is Glynn 1986; Cooke 1994; Chen and Schmeiser are indicated below as they are discussed.
1995; Chen 1996; Scott 1996; Andradottir and Bier 1997;
Chick 1997; Nelson, Schmeiser, Taaffe, and Wang 1997; 2 INPUT UNCERTAINTY
Chen, Chen, Lin, and Yilcesan 1999; Cheng 1999; Chick
and Inoue 2000Db). When simulating existing systems, or modifications to ex-
This tutorial on Bayesian methods for simulation adopts isting systems, we often have data regarding how the system
the view of Glynn (1986) and Chick (1997), in that Bayesian functions. For example, we may have collected interarrival
statistics can help a simulation analyst to deal with issues that and service times and rework probabilities. Sometimes a
arise in the decision-making process. Here we discuss input lot of data is available, in which case the system might be
distribution selection, sensitivity analysis, and the selection known fairly well, but other times there might not be much
of the best of several alternative systems. The focus is on data, so that the parameters of the system are not known
developing intuition for Bayesian methods, understanding precisely.
how those techniques apply to practical problems, and in- Suppose we are simulating a simple facility where
dicate similarities to and differences from some standard customers arrive to a waiting area with finite capacity, wait
frequentist methods used in practice. Thorough foundational until a single server can handle their service request, then are
developments are not included here, as these are alreadyprocessed before leaving the system (an M/G/1/K queue).
supplied in the many references given in the paper (please Several interarrival and service times have been collected
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to help identify an appropriate arrival rateand a service
time distribution.

On the other hand, a range of parameters may support
the data nearly as well as the MLE, as shown by the likelihood

Some commonly-used software packages take that data, function in Figure 1 (obtained for a particubgx. One might
fit the parameters of several candidate distributions (say, provide a confidence interval fox, and run simulations
using maximum likelihood or moment methods), then select that use the upper and lower confidence bounds to test
a specific distribution using a goodness-of-fit test. This the sensitivity of the output to input parameter uncertainty.
widely-used technique enjoys face validity by a large number Edwards (1984) proposes a ‘method of support’ to identify
of simulation modelers. a range of values of that are reasonably well supported by

However, using a single input distribution and parameter the data. He suggests looking at the log-likelihood function
to describe the system can strongly underestimate uncer-£(1; X) = In p(x | A) (the ‘support’), and chooses the of
tainty about the performance of a system. ‘The arrival rate 1 such that¢(x; X) — £(1; x) is small to be an alternative
is 2 = 5 customers per minute’ means very different things to a confidence interval. For example, the values above
if that rate is a point estimate from 10 interarrival times, the horizontal line in Figure 1 are within 1-log of the
rather than 1000. Barton and Schruben (2000) provide a maximum, and are therefore indicate reasonable values of
compelling example of how confidence intervals for the . The method of support is graphically intuitive even for
mean output can give only a small fraction of the desired multidimensional parameters, and uses more information

coverage probability if input uncertainty is ignored. And
Chick (2000} illustrates the potential ambiguity of goodness-
of-fit tests, which don't specify how to select from among
nonrejected distributions. Two simulation runs based on two
nonrejected service distributions can result in two nonover-
lapping confidence intervals for the mean output.

One way to account for uncertainty about input dis-
tributions is subjectiveprobability assessment. Subjective
probability assessments quantify the uncertainty of experts
about simulation inputs, and do not necessarily reflect state-

ments about repeated independent trials of a random variable.

They have been used in simulation practice (Cooke 1994;
Helton 1996; Scott 1996). Some software tools exist that
can help specify such distributions (Wagner and Wilson
1995). Data can be incorporated with subjective distribu-
tions for unknown inputs (a.k.a. prior distributions) using

Bayes rule. Sections 2.1 and 2.2 describe a parametric

Bayesian approach to select a probability distribution(e.g.,
exponential versus gamma) and a parameter for that dis-
tribution. Section 2.3 summarizes a nonparametric Bayes
alternative.

2.1 Parameter Uncertainty

about the likelihood than the maximum alone.

/'/ ~

/

/

Figure 1: The Likelihood Functiop(x | 1)
for the Exponential Distribution (Here with
n = 3 Points) Is Shaped like the Pdf of a
Gamma Distribution

However, the MLE and method of support do not
quantify uncertainty about with probability, so they are
unable to describe the probability thatexceeds a given
level, or to discuss expectations of figures of merit of a
gueueing system that sees an arrival stream with xate
This is required if one is to estimate the probability that the

Here we suppose that a continuous-valued input parametersteady-state fraction of M/G/1/K queue customers that balk

to a simulation is unknown, such as an arrival rateéo
an M/G/1/K queue. Suppose that interarrival times=
(x1,...,x,) are available to estimate. The likelihood
function for A is

p(x| &) = Ale™* Lz @)
The standard maximum likelihood estimator (MLE)=
Y1 xi/n is the arrival rate that maximizes the ‘likelihood’
of seeing the datx. Common practice would be to use

this estimator to choose an arrival rate parameter for input
to a computer simulation.
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exceeds a given threshold, for example.i lfvere known
with certainty, we could determine the fraction of balkers
with analytical methods or long simulation runs. Sirice
is not known, we can only answer the question ‘What is
the probability that more than 1% of customers balk?’ if a
probability model fora is specified.
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2.1.1 Accounting for Input Uncertainty

Bayesian methods do quantify uncertainty abautvith
probability, using the data and Bayes rule:

p(X|A)f(Q)
c(X)

PAIx ES (2)

wherec(x) = [ p(x|A)f(2) is a normalizing constant.
The ‘catch’ is that a prior distributiory (1) needs to be
specified to describe the uncertainty a modeler has about
before observing. The prior distribution reflects belief
about the value of, and doesot necessarily provide a
sampling distribution foi. over repeated experiments.
Sample averages= Y |, o;/n of n simulation repli-
cations can be used to estimate the mean olHpyD | Ag].
To estimate the mean outpB® [Ep[O | A]] in a way that
accounts for input parameter uncertainty, input parameters
are sampled according to their posterior distributions before
each replication, and held constant during the replication.
The procedure in Figure 2 gives the idea in general, where
there may be several unknown inputs, and the data
available to describe those inputs.

forr =1, ..., n replications

1. sample input distributions and parame-
ters for ther-th replication (structural
uncertainty), conditional on the info
mation&.

for ther-th replication:

=
1

a sample random variates given the

thinputdistributions and paramete
generate the simulation output
that is determined by the randg
variates.

=

S

m

end loop
generate the estimae= > "_, 0,/nof Eo[O | £].

Figure 2: Simulation algorithm that accounts for struc-
tural and stochastic uncertainty, given the information
£, using a Bayesian model average (BMA).

Glynn (1986) and Chick (1997) discuss this sampling
mechanism, 8ayesian model averagBMA), in the sim-
ulation context. Draper (1995) and Raftery (1995), among
others, use the BMA in other contexts and indicate how the
BMA addresses known concerns with point estimators and
goodness-of-fit tests. See also Berger and Pericchi (1996).
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2.1.2 Prior Distributions.

Although any choice of prior distributioif (1) for A on the
positive real line that a decision maker feels comfortable
with is appropriate, there are some prior probability distribu-
tions of particular interest. Theonjugateprior distribution
has the property that the posterior distribution has the same
functional form as the prior distribution, a property that
simplifies Bayesian inference. More general prior distribu-
tions may require Markov Chain Monte Carlo techniques
to explore the posterior distribution (Gilks, Richardson, and
Spiegelhalter 1996). For conditionally independent sam-
ples from an exponential distribution, the conjugate prior
distribution for A is the gamma distribution, because the
posterior distribution givex is also a gamma distribution.

It is therefore no coincidence that the likelihood function
for the exponential in Figure 1 is shaped like the pdf of a
gamma distribution.

Sometimes, aroninformative or referenceprior dis-
tribution is desired, so that the prior distribution doesn't
overly influence the posterior distribution, or to explore
the relationship of Bayesian inference with classical sta-
tistical results (Kass and Wasserman 1996; Berger 1985).
For a given sampling distribution, the noninformative dis-
tribution may or may not beroper (i.e., integrate to 1).
For the exponential model, the noninformative prior dis-
tribution (de Groot 1970) isf (1) = A~1dA, an improper
distribution. The posterior distribution, given that nonin-
formative prior pdf and the data, is a proper gamma
distribution with shape parameter— 1, meam/ > ;_; x;,
and mode (a.k.a. maximueposteriorior MAP estimator)
is (n— 1)/ er»‘:lxi.

It turns out that all members of the regular exponential
family of distributions have conjugate prior distributions.
In particular, if the pdf can be written

d
fxp (1) = a(x)gG)exp| > cjpj(Mhj(x)

j=1

3

for somea(-), g(-), ¢j, ¢; (), hj(-), then the conjugate prior
distribution is

d
far ) = KO g0 exp| D cigi | (4)

j=1

where the parametert (to,...,ty) is chosen
so that fa (1) is proper (i.e., so thatK(¢)
[Tg(10 exp[zj?:l cj¢j()\)tj] ) < o0). This family in-

cludes the exponential, gamma, Bernoulli, Poisson, normal,

lognormal, and many other commonly used distributions
(Bernardo and Smith 1994; de Groot 1970).
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The choice of an appropriate prior distributionisasource M = m andy; and the predictive probability density function
of controversy. Lindley (1972), Savage (1972, Chapters 1- foy (o) of the simulation outpuD, giveny:
6) and de Finetti (1990) give foundational developments

for subjective probability. Kahneman, Slovic, and Tversky S im (Y) 7Tp (m)

(1982) study behavioral aspects of subjective probability as- Pumiy (m) sz 1 ik () T (k) ®)

sessments, see also Winkler (1972). Kass and Wasserman -

(1996) present mechanisms for developing ‘default’ nonin- Faoimy Gon) = Niman ) fAm Q) ©6)
m Wl,y m -

formative priors, and others have suggested using subsets
of the data to automate the selection of a prior (Berger
and Pericchi 1996; O’Hagan 1995). In some situations the Sim (Y)
precise method for assessing a prior distribution may be
somewhat irrelevant, in that the posterior distribution may
be relatively insensitive to changes in the prior distribution
(Berger 1994).

Chick (2000) gives several examples of prior distri-
butions for simulation inputs, and implements the BMA
algorithm in Figure 2 for a queueing simulation.

fY\m (Y)
/ fy\m,km (y)fA,,,Im ()\m)d)\m

fOly (0)

q
Z pumly (m)/foxm,;\,,, (0)
m=1

S fAmlm,y (Am) dAm (7)

Equation 7 gives the distribution of simulation output when
input distribution and parameter uncertainty are accounted
for by the BMA algorithm of Figure 2. Step 1 of the
algorithm samples an input distribution and parameter
Am, and Step 2 generates the outpuas a function of the
variates generated using those inputs.

Equation 7 assumes thab . 5,,.y (0) = foym i, (0),
which reflects the modeling assumption that historical data
for Y and simulation outpu® are conditionally independent,
given the distributiomz and parametex,,. The assumption
is reasonable if the simulated variates are generated inde-
pendent of the values of the historical data, but is violated
by trace-driven simulations.

Shifted distributions, like the shifted gamma above, are

2.2 Input Distribution Uncertainty

Turn now to the selection of an input distribution and
parameter for the service times of the M/G/1/K queue. In
simulation practice, a set @f candidate distributions are
proposed, then point estimation and goodness-of-fit tests are
used to identify an appropriate distribution and parameter.
For example, lek; be the input parameter associated with
candidate distribution for the service distribution, say with

g = 2, usingm = 1 for the exponential angh = 2 for the
shifted gamma.

1. Exponential.ii = (9), with rated > 0, used more frequently in simulation but are less frequently
studied from an analytic perspective. Perhaps this is because

Frimetng () = g0 _regularity conditions can fail to hold (the_ shifte_d gamma

' is not a member of the regular exponential family, so a fi-

2. Shifted gammai, = (£, @, B), with £, @, > 0. nite dimensional conjugate prior distribution does not exist;

maximum likelihood estimators may be ill-defined). Chick
@ w1 (2000) gives an example of assessing a prior distribution
Jyim=22 (y) = m(y — & exp[-(y—8)Bl.  for a shifted gamma distribution, and illustrates the use of
the adaptive rejection Metropolis sampler (ARMS) of Gilks,
A natural extension of the ideas in Section 2.1 is to con- Best, and Tan (1995) to generate the samples from the pos-

sider the unknown distribution to be a random varialde terior distributions in Equations 5-6. The ARMS and other
posit a prior probability that each model is correeg(m), MCMC techniques may be required to work with posterior
for m = 1,...,q), and then specify a prior distribution  distributions when nonregularity arises in general. Note that
FAnim (M) for the parametek,, of each distribution, con- improper prior distributions cannot be used when there is
ditional on knowing the right distributiom: (A, can be more than one candidate input distribution, as the arbitrary
multivariate). Given service time data= (y1,..., yu), proportionality constant for an impropég,,m (A») would

Bayes rule again determines the posterior mass function cause Equation 5 to be ill-defined.

(pmf) pyyy (m) that a given distributiom = m is cor-

rect, giveny; the posterior probability density function 2.3 Nonparametric Bayes Methods

fAnimy (An) that a given parametex,, is correct, given
The previous approaches require that parametric models be
used for input distributions. An alternate strategy is to use
empirical distributions (Law and Kelton 2000). Barton and
Schruben (1993) advocate bootstrapping to quantify uncer-
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tainty that occurs from using an empirical distribution. Bar- If we are interested in how input uncertainty affects
ton and Schruben (2000) later propose several mechanismsthe mean system performance, we may be more interested
for accounting for uncertainty about empirical distributions, in properties of the conditional expectation of the output,
including a Bayesian bootstrapping technique they call a given the inputs. More formally, if is a vector of one or

randomized empirical distribution function (EDF). more input parameters that describe sources of randomness
The standard piecewise continuous EDE(-) assigns in a simulation, the mean response

probability according to the order statisticg,, . . ., x(,) of

the datax. n®) = EolO | £,6], (9)
0 if x < xq gives information about how the unknown mean depends
[ — X—X( H . . . - .

Fe(x) = ;1_—11 + (n—l)(x(,-+(1;—Xm> if x4 < x < x4 on e_a_ch input. Th_|s section examines p_ropertleS of the
1 if x > x@) conditional expectation of the output, when input parameters

(8) are unknown.

Rather than assigning, (x;)) = (i —1)/(n — 1) determin- 3.1 Output Response Metamodels

istically, they note that the marginal distribution of th¢h

order statistic has a Betag —i + 1) distribution. Therefore, One approach to estimating the mean resporge as a

uncertainty about the EDF for a given random quantity in function of an unknowrp-dimensional input vectof is to
a simulation can be described by using atoms for the EDF posit a functional form

that have the same distribution as the order statistics, rather

than using(i — 1)/(n — 1). This leads to the modification k-1

in Figure 3 to the model average in Figure 2 to account n®) = Z,Bifi(@) (10)
for input uncertainty for empirical distributions. Figure 3 i=0

describes how to handle a single source of uncertainty.

Multiple sources are handled analogously. where theg; are unknown coefficients that are to be esti-

mated, and thef; (0) are suitably selected basis functions.
To simplify, we presume thai is a vector of continuous

parameters, and do not include decision variables (param-
1. Generate a sample ofvalues from a unit eters under our control). When th#(9) are polynomials,
form [O,l] distribution with ordered values this is a po|ynomia| regression model.
ULL)s - -5 Un]- There are at least two distinct approaches. George
2. SetF.(x)) = uy;}, then smooth the EDF, and McCulloch (1996) propose a stochastic search variable
say, by linear interpolation as in Equatior) 8, selection (SSVS) technique. They use a normal linear model
and use this as the input distribution (rather for the n-dimensional output vectas,
than selecting a parametric distribution|in
step 1 of Figure 2). 0~ /\/’(Aﬂ, 021,1)
3. Conduct a simulation run using this em-
pirical distribution (_step_ 2 of Figure 2). wheren is the number of replications) is then x k input
4. Repeat for alk replications. : : : 2
matrix (a function of the inputs)g< is a scalar, and,,
is the identity matrix. Motivated by a desire to identify a

Figure 3: Arandomized empirical distribution function subsetr], ... A7 of important factors, they propose a prior
using a Bayesian bootstrap. distribution for the response parametg@ghat allows for

the possibility that eacl; is either large in absolute value,
or near zero. This is done as a scale mixture of two normal
3 SENSITIVITY distributions, with indicator variableg; = 0 or 1,

Section 2 focuses on propagating input distribution and pa- Peiy (B) = (L—yN (0, Tiz) + YN (O, Ciztl_z)
rameter uncertainty to simulation output in order to account

for output uncertainty that is due to input uncertainty. The \here

figure of meritis the mean outplity [0 | £]1 = EA[Eo[O |

£, A]] given the dataf, averaged not only over stochastic ryi=D)=1-plyi=1 =h;.
uncertainty of the system (random outpufor a given),

but also over systemic uncertainty (an unknown The hyperparametetsandc; are set small and large respec-

tively so that\ (0, 7?) is concentrated, and/ (0, c?z?)
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is diffuse. The idea is that whepy = 0, the coefficient

B; is probably quite small and can be ‘safely’ estimated
as 0. George and McCulloch (1996) also describe strate-
gies for choosingr;, ¢;, h;, and a prior distribution for
o2. Cheng (1999) extends the SSVS, in part by presum-
ing that the errors have an inverse Gaussian distribution,
rather than a normal distribution. He uses the technique to
fit a high-order polynomial response model to a computer
packet assembly/disassembly device simulation. Chipman,
Hamada, and Wu (1997) describe prior distributions gor
that account for complex aliasing, such effect sparsity and
effect heredity.

The approach advocated by Raftery, Madigan, and
Hoeting (1997) differs from George and McCulloch (1996)
in that there are *2 distinct candidate response models
n1(9), ..., nx(0), each model corresponding to one of the
2¢ combinations of considering each of tige to be zero
or nonzero. Raftery, Madigan, and Hoeting (1997) provide
desiderata to assess prior distributions for the condi-
tional on the response model. Chick and Ng (2000) run
simulations to see if that approach can identify the true re-
sponse surface l—In(u — A) for the log of the stationary
mean occupancy of the M/M/1 queue. They propose the
following 2* candidate response models, as functions of the
unknown arrival and service rates= (A, u):

o m,uw) =po+prInpu+ B2Ink+ BzIn(u — 1)
o n2, ) =po+prinpu+ B2Ini +0

e 3k, ) =0+0+B2InA + B3In(u — A)
e nua(l,u) =04+0+B2InA+0
e n5(A, u) =0+0+0+ BzIn(w — 1)

Given 25 replications each for 4 different sampled inputs
(ui, Mi, 0i), they found the posterior marginal probability
for the correct functional formngs) was much higher than
for competitor models (see Table 1).

Table 1: Posterior Probability (Prob.) of Several Proposed
Functional Forms for the Log of the Stationary Occupancy
ofan M/M/1 Queue; the Correct Model Is Heavily Favored
after 100 Replications

Prob.  Response function

0.780 mn13=pB2InA+ B3In(u — A)

0.130 nog=p1Inpu+ B2Inx+ BzIn( — 2)
0.073 15 = Bo+ P2Ini + BzIn(u — 1)

0.013 ni=pBo+B1lnp+B2InA+ Baln(u — 1)
1002 pp=po+prinu+ B2lna

107192 5= fo
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3.2 Distribution of Conditional Expectation

Lee and Glynn (1999) estimate the distribution function of
a conditional expectation, rather than its mean.

Pro(EolO | £,0] <o)

Applications of this type of estimation are risk manage-
ment portfolios, where an option’s current value can be
expressed as a conditional expectation; and capacity expan-
sion decisions, when the future demand is unknown and
the probability of having sufficient capacity is of central
concern. Lee and Glynn (1999) use large deviation results
to determine how to allocate computing time to two differ-
ent activities, sampling outputs for at a fixedo estimate
EolO | &, 1], and sampling at differemt to account for
input uncertainty. See Lee and Glynn (1999) for details.

4 SELECTION PROCEDURES

Selection procedures provide a means to allocate computer
budgets to run simulation replications so that the best system
can be identified. Here, best is taken to mean the system
with the highest (or lowest) expected value of the output.
Since the output is random, the system selected as best is
not necessarily best.

Figure 4 gives the general structure of a selection pro-
cedure. Selection procedures are distinguished by the way
they accomplish each step. Indifference-zone (1Z) proce-
dures have been the standard means to identify the best
simulated system (Goldsman and Nelson 1998). They are
based on a frequentist analysis that guarantees that the best
system will be identifed as best with a probability that ex-
ceeds some threshold*, subject to an indifference zone
constraint (the best system is at ledstbetter than all of
the others, wheré* is the smallest practically significant
difference to a decision maker). Many |IZ procedures are
statistically conservative, and require many replications even
for systems that perform poorly during the first stage of
replications. Nelson, Swann, Goldsman, and Song (2000)
combine a subset selection step with 1Z ideas to reduce the
expected number of simulation replications required when
there are noncompetitive systems.

Two distinct Bayesian formulations have been proposed
as an alternate means to improve the efficiency of selection
procedures. Rather than suggesting how many replications
are required to guarantee a given probability of correct
selectionP*, focus is on allocating replications to improve
the Bayesian posterior probability of correct selection. The
two formulations share features described in Section 4.1,
and are distinguished in Section 4.2 and Section 4.3. Inoue,
Chick, and Chen (1999) indicate that all the sequential
Bayesian procedures here, and the two stage procedures
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Run an initial stage of replications (say;,
replications per system).

Determine how many more replications
to run for each system,=1, ..., k.

Run the replications additional replications.

If more replications are desired, go to step 2.
Select one system as best based on the
simulation output.

o w

Figure 4: One generic selection procedure.

based onideas in Section 4.3, perform favorably with respect
to the two-stage 1Z procedure of Rinott (1978).

4.1 Bayesian Selection Procedure Basics

Suppose that the best éfsystems is to be selected, that
the simulation outpub; ; for replication j of systemi is
normally distributed with an unknown mean and variance
al.z G=1....k;j=1,..). For the moment, presume
that theo; ; are jointly independent. A Bayesian approach
considers the unknown mean of systérto be a random
variable W; whose realizationw; is to be inferred with
Bayes' rule and the output; = (0;.1, ..., 0i,m;) SEEN SO
far. We usew; rather thanu; to follow the convention
of writing random variables (realizations) in upper (lower)
case. We also refer to the precision of a normal distribution,
A= 1/ai2, rather than the variance. Set= (w1, ..., wg)
andA = (A1, ..., Ag).

Information from initial runs is used by assigning a
prior distribution and using Bayes' rule to infer the values
of the unknown mea; and precisiom\;. Here we use the
noninformative prior pdff (w;, A;) o 1/X;. After observing
the outpub; = (0; 1, . .., 0;,m;), determine the sample mean
o; and sample variano@,?. The joint posterior distribution
for W; and A; is a normal-gamma distribution (de Groot
1970),

A~ G(mi—D/2.62mi -1/2)  (@11)
Wil ~ N(a,-,x;l/m,-). (12)
where a gamma distributiof («, ) has mearnx/8 and

variancea/2, and a normal distribution\” (11, 02) has
meanu and variance 2. Further, the marginal distribution

where the three parameter Student-t distribu8ot, «, v)
has mearnu, precisionk, and degrees of freedom When
v > 2, the variance isc tv/(v — 2) (not «~1). If the
varianceai2 is known, the noninformative prior fow; is
f(w;) < 1, and the posterior distribution givemn is

Wi ~ N (51-, o,?/m,-). (14)
Independent replications and independent noninfor-
mative prior distributions imply that théV; are jointly
independent.  The distributions in Equation 18 £
1,...,k) determine the Bayesian probability of correct
selection (PCayed, defined as the posterior proba-
bility that the meanwg, of the selected system is
the meanwy; of the ‘best’, given all output § =
{0,~_J~:i:l,...,k;j:l,...,mi}),

PCSayes = Pr({w: we = w} 1€),  (15)

The quantity PCgayesmeasures thprobabilistic evidence

for correct selectiorafter a given set of replications have
been runnot the probability that a procedure will select a
known best system in repeated applications of a procedure
to the same selection problem.

The procedures in Section 4.2 and Section 4.3 are
motivated in different ways by the Bayesian formulation.
The procedures allocate replications in an attempt to improve
PCSsayes and do not yet make claims about prespecified

frequentist guarantees fatr*.
4.2 OCBA Procedures

TheOCB.A algorithms of Chen (1996) and Chen, Chen, Lin,
and Yucesan (1999) are motivated by a thought experiment
regarding the distribution of the unknown mean. The idea
is to approximate how a few additional replications might
change PC@ayeg assuming that (a) the system with the
best sample mean based on replications seen so far is to be
selected, (b) the effect of an additional small numbeof
replications for systemreduces the variance in the estimate
in the unknown mean by changing the factoréﬁf/m,- toa
factor 01‘6,.2 /(m;+n;). This type of ‘variance adjustment’is
also used in Law and Kelton (2000) to estimate the number
of additional replications needed to obtain a confidence
interval of a prespecified size.

Chen (1996) makes several approximations that are
designed to reduce the CPU time to allocate the additional
replications (step 2 of Figure 4) for the next stage of the

and frequentist confidence interval for the unknown mean nrocedure. One, PGfyes is approximated by a lower
are both described by the same three parameter Student-thoyng called the approximate probability of correct selection

distribution,

W; ~ St (5,‘, ml'/&iz, m; — 1)’ (13)
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(APCS).

Apcsef

1_[ Pr({w Twj < w(k)} |€)

Jrj# k)

(16)
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Two, the sample variance is presumed to be a good estimate To compute the expected value of information that will
of the known variance, and Equation 14 is used rather than be gained from running more replications, the probability
Equation 13. The thought experiment presumes that if an that a given system will be selected as ‘best’ (the system

additional n; replications are allocated for system but
none are allocated for the others, then

W, o~ /\/<5i,3i2/(mi+ni))

wW; ~ N((jj,&jz/mj) for j #£1i.

This induces aestimated approximate probability of correct
selection(EAPCS) of

EAPCS = [] Pr({w:d; < i} |€).
JeiA )

17)

where the probability is with respect to the distribution of
W = (W1, ..., W) rather thanW.

Replications are allocated at each stage to increase

an estimate of the improvement in correct selection,
EAPCS —APCS. Chen and coauthors provide a number of
variations on this central theme that make various asymp-
totic approximations for allocating replications at each stage.
The procedures can stop either when the APCS reaches

satisfactorily high level, or when the computer budget for

replications is exhausted. The procedures are empirically
effective at identifying the best system, particularly when

run sequentially.

4.3 Value of Information Procedures

Another approach attempts to select an additional number
of replications for each system to improve tbgpected
value of informationgained from those replications, rather
than using the thought experiment of Section 4.2. Infor-
mation gains for the probability of correct selection are
measured with respect to the 0-1 loss function (the loss is O
if the best is correctly selected, and is 1 for incorrect selec-
tions). Alternately replications can be allocated to reduce
the expected opportunity cost loss of a potentially incor-
rect selection. Gupta and Miescke (1996) provide a formal
problem statement and indicate that closed-form solutions
are known only for special cases, and that computation of
an optimal solution is numerically intensive.

Chick and Inoue (2000b) propose a surrogate objective
(the sum over pairwise comparisons between the current bes
at each other system for the expected value of information)
thatis readily computed under general conditions, and derive

two-stage and sequential procedures for both loss functions,

assuming that replications are independent. Chick and
Inoue (2000a) derive two stage procedures, one for each
loss function, assuming that common random numbers and
screening are used.
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with the highest posterior mean performance) is required.
This requires th@redictive distributiorfor the outputY; =
(Yi1,...,Yi,)tobe observed, as well as the predictive dis-
tribution for the posterior mea#d; = E[O; ;41 | 0;, Yil.
Since uncertainty abow;, A; giveno; is given by Equa-
tions 11-12, and th&; ; is conditionally independent given
that mean and precision, one can show (Bernardo and Smith

1994) that
Yi; ~ Stloj, ———.mi -1 18
. (0 (mi+1)0i2 m ) (18)
m; —1). (19)

St (5,’ ,

Oncey; is observed, thery = E[O; ;41 | 0;, yi]is readily
computed. The system with the maximalafter all output
is observed is selected as best.

The ‘value of information’ procedures select the number
of replications to be done:f, ..., ny) to alter the distribu-
tions of the yet-to-be-observed posterior mean performance
of each system4s, ..., Z;) to improve the value of infor-
mation of those replications. See Chick and Inoue (2000a)
and Chick and Inoue (2000b) for theory, and for numerical
results that show the procedures compare favorably with
some indifference-zone procedures.

m;

m;(m; + n;)

.52
n;o;

Z;

~

5 CLOSING REMARKS

Bayesian methods provide an alternate way of viewing
issues that arise during a simulation analysis. This paper
described a subset of the ways that Bayesian, decision-
theoretic methods can be applied to resolve issues about
input uncertainty, to select input distributions, to evaluate
how output uncertainty is affected by input uncertainty,
and to efficiently identify the best of a set of simulated
alternatives. Other issues that may be important to address
include (i) data collection plans that reduce input parameter
uncertainty in a way that reduces output uncertainty; (ii)
a more comprehensive integration of input uncertainty into
the selection procedures; (iii) further integration of multiple
sources of information about input or output characteristics;
t(iv) inclusion of multiple attributes in the decision-making
process that is served by simulation; (v) a further accounting
of different types of correlation in Bayesian inference (via
antithetic variates, or from batch to batch, etc.) (vi) the
incorporation of derivative information into response model
estimates.
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