
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

BAYESIAN METHODS FOR SIMULATION

Stephen E. Chick

Department of Industrial and Operations Engineering
The University of Michigan

1205 Beal Avenue
Ann Arbor, MI 48109-2117, U.S.A.

od
hi
s
o

on
cal
nd
the

at
al
if
s

pro
ut
ee
ar
er
7;

97
ick

ts
n

tha
pu

ion
on

ing
in-

ard
na
ad

as

t-
in

u-
n,

r
h-
lly
-
.
to

ify
x-
ds,
ot
),
r
).
ore
as

s,

x-
em
al
a
e

h
wn

e
it
are
e).
ted
ABSTRACT

This tutorial describes some ways that Bayesian meth
address problems that arise during simulation studies. T
includes quantifying uncertainty about input distribution
and parameters, sensitivity analysis, and the selection
the best of several simulated alternatives. Focus is
illustrating the main ideas and their relevance to practi
problems. Numerous citations for both introductory a
more advanced material provide a launching pad into
Bayesian literature.

1 INTRODUCTION

It is easy to argue that Bayesian methods don’t apply
all to simulation, if simulation is taken to be a numeric
analysis tool for studying complex systems. However,
simulation is considered to be an analytical tool that inform
decisions, then Bayesian methods are relevant and ap
priate. Bayesian methods for simulation input and outp
uncertainty have been around for some time, but have b
increasingly applied and developed in recent years (a p
tial list is Glynn 1986; Cooke 1994; Chen and Schmeis
1995; Chen 1996; Scott 1996; Andradóttir and Bier 199
Chick 1997; Nelson, Schmeiser, Taaffe, and Wang 19
Chen, Chen, Lin, and Yücesan 1999; Cheng 1999; Ch
and Inoue 2000b).

This tutorial on Bayesian methods for simulation adop
the view of Glynn (1986) and Chick (1997), in that Bayesia
statistics can help a simulation analyst to deal with issues
arise in the decision-making process. Here we discuss in
distribution selection, sensitivity analysis, and the select
of the best of several alternative systems. The focus is
developing intuition for Bayesian methods, understand
how those techniques apply to practical problems, and
dicate similarities to and differences from some stand
frequentist methods used in practice. Thorough foundatio
developments are not included here, as these are alre
supplied in the many references given in the paper (ple
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excuse omissions, which are unintentional). Nor do we a
tempt to review the rapidly expanding use of Markov Cha
Monte Carlo (MCMC) simulation to implement Bayesian
inference, which use applies simulation to address comp
tational issues in Bayesian inference (Gilks, Richardso
and Spiegelhalter 1996; Carlin and Louis 1996).

Although the article deals with Bayesian methods fo
simulation, many of the ideas apply to other areas. Tec
niques to model input parameter uncertainty apply equa
well to simulations of customer arrivals to a service fa
cility and to an analytical study of the M/G/1/K queue
And statistical selection procedures apply both to studies
identify the best simulated system, and to studies to ident
the best disease therapy, be it medical or agricultural. E
cellent references to various aspects of Bayesian metho
subjective probability, and decision analysis in general, n
just as they apply to simulation, include de Groot (1970
Lindley (1972), Savage (1972), Winkler (1972), Berge
(1985), de Finetti (1990), and Bernardo and Smith (1994
References that address issues that seem to be of m
interest at present to simulation than to other areas, such
shifted input distributions and common random number
are indicated below as they are discussed.

2 INPUT UNCERTAINTY

When simulating existing systems, or modifications to e
isting systems, we often have data regarding how the syst
functions. For example, we may have collected interarriv
and service times and rework probabilities. Sometimes
lot of data is available, in which case the system might b
known fairly well, but other times there might not be muc
data, so that the parameters of the system are not kno
precisely.

Suppose we are simulating a simple facility wher
customers arrive to a waiting area with finite capacity, wa
until a single server can handle their service request, then
processed before leaving the system (an M/G/1/K queu
Several interarrival and service times have been collec
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to help identify an appropriate arrival rateλ and a service
time distribution.

Some commonly-used software packages take that d
fit the parameters of several candidate distributions (s
using maximum likelihood or moment methods), then sele
a specific distribution using a goodness-of-fit test. Th
widely-used technique enjoys face validity by a large numb
of simulation modelers.

However, using a single input distribution and paramet
to describe the system can strongly underestimate unc
tainty about the performance of a system. ‘The arrival ra
is λ = 5 customers per minute’ means very different thing
if that rate is a point estimate from 10 interarrival times
rather than 1000. Barton and Schruben (2000) provide
compelling example of how confidence intervals for th
mean output can give only a small fraction of the desire
coverage probability if input uncertainty is ignored. An
Chick (2000) illustrates the potential ambiguity of goodnes
of-fit tests, which don’t specify how to select from amon
nonrejected distributions. Two simulation runs based on tw
nonrejected service distributions can result in two nonove
lapping confidence intervals for the mean output.

One way to account for uncertainty about input dis
tributions issubjectiveprobability assessment. Subjectiv
probability assessments quantify the uncertainty of expe
about simulation inputs, and do not necessarily reflect sta
ments about repeated independent trials of a random varia
They have been used in simulation practice (Cooke 199
Helton 1996; Scott 1996). Some software tools exist th
can help specify such distributions (Wagner and Wilso
1995). Data can be incorporated with subjective distrib
tions for unknown inputs (a.k.a. prior distributions) usin
Bayes rule. Sections 2.1 and 2.2 describe a parame
Bayesian approach to select a probability distribution(e.
exponential versus gamma) and a parameter for that d
tribution. Section 2.3 summarizes a nonparametric Bay
alternative.

2.1 Parameter Uncertainty

Here we suppose that a continuous-valued input parame
to a simulation is unknown, such as an arrival rateλ to
an M/G/1/K queue. Suppose that interarrival timesx =
(x1, . . . , xn) are available to estimateλ. The likelihood
function for λ is

p(x | λ) = λne−λ
∑n
i=1 xi (1)

The standard maximum likelihood estimator (MLE)λ̂ =∑n
i=1 xi/n is the arrival rate that maximizes the ‘likelihood

of seeing the datax. Common practice would be to use
this estimator to choose an arrival rate parameter for inp
to a computer simulation.
110
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On the other hand, a range of parameters may supp
the data nearly as well as the MLE, as shown by the likeliho
function in Figure 1 (obtained for a particularx). One might
provide a confidence interval forλ, and run simulations
that use the upper and lower confidence bounds to t
the sensitivity of the output to input parameter uncertaint
Edwards (1984) proposes a ‘method of support’ to identi
a range of values ofλ that are reasonably well supported b
the data. He suggests looking at the log-likelihood functio
`(λ; x) = lnp(x | λ) (the ‘support’), and chooses the o
λ such that̀ (λ̂; x) − `(λ; x) is small to be an alternative
to a confidence interval. For example, the values abo
the horizontal line in Figure 1 are within 1-log of the
maximum, and are therefore indicate reasonable values
λ. The method of support is graphically intuitive even fo
multidimensional parameters, and uses more informati
about the likelihood than the maximum alone.
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Figure 1: The Likelihood Functionp(x | λ)
for the Exponential Distribution (Here with
n = 3 Points) Is Shaped like the Pdf of a
Gamma Distribution

However, the MLE and method of support do no
quantify uncertainty aboutλ with probability, so they are
unable to describe the probability thatλ exceeds a given
level, or to discuss expectations of figures of merit of
queueing system that sees an arrival stream with rateλ.
This is required if one is to estimate the probability that th
steady-state fraction of M/G/1/K queue customers that ba
exceeds a given threshold, for example. Ifλ were known
with certainty, we could determine the fraction of balker
with analytical methods or long simulation runs. Sinceλ
is not known, we can only answer the question ‘What
the probability that more than 1% of customers balk?’ if
probability model forλ is specified.
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2.1.1 Accounting for Input Uncertainty

Bayesian methods do quantify uncertainty aboutλ with
probability, using the datax and Bayes rule:

p3|x (λ) = p(x | λ)f (λ)
c(x)

(2)

where c(x) = ∫
p(x | λ)f (λ) is a normalizing constant.

The ‘catch’ is that a prior distributionf (λ) needs to be
specified to describe the uncertainty a modeler has aboλ
before observingx. The prior distribution reflects abelief
about the value ofλ, and doesnot necessarily provide a
sampling distribution forλ over repeated experiments.

Sample averageŝo =∑n
i=1 oi/n of n simulation repli-

cations can be used to estimate the mean outputEO [O | λ0].
To estimate the mean outputE3[EO [O | 3]] in a way that
accounts for input parameter uncertainty, input parame
are sampled according to their posterior distributions bef
each replication, and held constant during the replicati
The procedure in Figure 2 gives the idea in general, wh
there may be several unknown inputs, and the dataE is
available to describe those inputs.

for r = 1, . . . , n replications

1. sample input distributions and parame-
ters for ther-th replication (structural
uncertainty), conditional on the infor-
mationE .

2. for ther-th replication:

a sample random variates given ther-
th input distributions and parameters

b generate the simulation outputor
that is determined by the random
variates.

end loop
generate the estimateô =∑n

r=1 or/n ofEO [O | E].
Figure 2: Simulation algorithm that accounts for struc-
tural and stochastic uncertainty, given the information
E , using a Bayesian model average (BMA).

Glynn (1986) and Chick (1997) discuss this sampli
mechanism, aBayesian model average(BMA), in the sim-
ulation context. Draper (1995) and Raftery (1995), amo
others, use the BMA in other contexts and indicate how
BMA addresses known concerns with point estimators a
goodness-of-fit tests. See also Berger and Pericchi (19
s
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2.1.2 Prior Distributions.

Although any choice of prior distributionf (λ) for λ on the
positive real line that a decision maker feels comfortab
with is appropriate, there are some prior probability distribu
tions of particular interest. Theconjugateprior distribution
has the property that the posterior distribution has the sa
functional form as the prior distribution, a property tha
simplifies Bayesian inference. More general prior distribu
tions may require Markov Chain Monte Carlo technique
to explore the posterior distribution (Gilks, Richardson, an
Spiegelhalter 1996). For conditionally independent sam
ples from an exponential distribution, the conjugate prio
distribution for λ is the gamma distribution, because th
posterior distribution givenx is also a gamma distribution.
It is therefore no coincidence that the likelihood functio
for the exponential in Figure 1 is shaped like the pdf of
gamma distribution.

Sometimes, anoninformative, or referenceprior dis-
tribution is desired, so that the prior distribution doesn
overly influence the posterior distribution, or to explor
the relationship of Bayesian inference with classical st
tistical results (Kass and Wasserman 1996; Berger 198
For a given sampling distribution, the noninformative dis
tribution may or may not beproper (i.e., integrate to 1).
For the exponential model, the noninformative prior dis
tribution (de Groot 1970) isf (λ) = λ−1dλ, an improper
distribution. The posterior distribution, given that nonin
formative prior pdf and the datax, is a proper gamma
distribution with shape parametern− 1, meann/

∑n
i=1 xi ,

and mode (a.k.a. maximuma posteriorior MAP estimator)
is (n− 1)/

∑n
i=1 xi .

It turns out that all members of the regular exponenti
family of distributions have conjugate prior distributions
In particular, if the pdf can be written

fX|λ (x) = a(x)g(λ)exp

 d∑
j=1

cjφj (λ)hj (x)

 (3)

for somea(·), g(·), cj , φj (·), hj (·), then the conjugate prior
distribution is

f3|t (λ) = [K(t)]−1[g(λ)]t0 exp

 d∑
j=1

cjφj (λ)tj

 (4)

where the parametert = (t0, . . . , td ) is chosen
so that f3|t (λ) is proper (i.e., so thatK(t) =∫ [g(λ)]t0 exp

[∑d
j=1 cjφj (λ)tj

]
dλ <∞). This family in-

cludes the exponential, gamma, Bernoulli, Poisson, norm
lognormal, and many other commonly used distribution
(Bernardo and Smith 1994; de Groot 1970).



Chick

rce
1-

nts
ky
as-
rma
in-
set

ger
the
be
ay
on

ri-
A

d
In

ar
ter.
ith

n-

tion

n

n

n
ted

ata
,

de-
ed

re
tly
use
a
fi-
st;
k
ion
of

s,
os-

er
or
hat

is
ary

s be
The choice of an appropriate prior distribution is a sou
of controversy. Lindley (1972), Savage (1972, Chapters
6) and de Finetti (1990) give foundational developme
for subjective probability. Kahneman, Slovic, and Tvers
(1982) study behavioral aspects of subjective probability
sessments, see also Winkler (1972). Kass and Wasse
(1996) present mechanisms for developing ‘default’ non
formative priors, and others have suggested using sub
of the data to automate the selection of a prior (Ber
and Pericchi 1996; O’Hagan 1995). In some situations
precise method for assessing a prior distribution may
somewhat irrelevant, in that the posterior distribution m
be relatively insensitive to changes in the prior distributi
(Berger 1994).

Chick (2000) gives several examples of prior dist
butions for simulation inputs, and implements the BM
algorithm in Figure 2 for a queueing simulation.

2.2 Input Distribution Uncertainty

Turn now to the selection of an input distribution an
parameter for the service times of the M/G/1/K queue.
simulation practice, a set ofq candidate distributions are
proposed, then point estimation and goodness-of-fit tests
used to identify an appropriate distribution and parame
For example, letλi be the input parameter associated w
candidate distributioni for the service distribution, say with
q = 2, usingm = 1 for the exponential andm = 2 for the
shifted gamma.

1. Exponential.λ1 = (θ), with rateθ > 0,

fY |m=1,λ1 (y) = θe−yθ .

2. Shifted gamma.λ2 = (ξ, α, β), with ξ, α, β > 0.

fY |m=2,λ2 (y) =
βα

0(α)
(y − ξ)α−1 exp[−(y − ξ)β] .

A natural extension of the ideas in Section 2.1 is to co
sider the unknown distribution to be a random variableM,
posit a prior probability that each model is correct (πM(m),
for m = 1, . . . , q), and then specify a prior distribution
f3m|m (λm) for the parameterλm of each distribution, con-
ditional on knowing the right distributionm (λm can be
multivariate). Given service time datay = (y1, . . . , yn′),
Bayes rule again determines the posterior mass func
(pmf) pM|y (m) that a given distributionM = m is cor-
rect, given y; the posterior probability density functio
f3m|m,y (λm) that a given parameterλm is correct, given
se
d
er-
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M = mandy; and the predictive probability density functio
fO|y (o) of the simulation outputO, given y:

pM|y (m) = fY|m (y) πM(m)∑q
k=1 fY|k (y) πM(k)

(5)

f3m|m,y (λm) =
fY|m,λm (y) f3m|m (λm)

fY|m (y)
(6)

fY|m (y) =
∫
fy|m,λm (y)f3m|m (λm)dλm

fO|y (o) =
q∑

m=1

pM|y (m)
∫
fO|m,λm (o)

× f3m|m,y (λm) dλm (7)

Equation 7 gives the distribution of simulation output whe
input distribution and parameter uncertainty are accoun
for by the BMA algorithm of Figure 2. Step 1 of the
algorithm samples an input distributionm and parameter
λm, and Step 2 generates the outputo as a function of the
variates generated using those inputs.

Equation 7 assumes thatfO|m,λm,y (o) = fO|m,λm (o),
which reflects the modeling assumption that historical d
for Y and simulation outputO are conditionally independent
given the distributionm and parameterλm. The assumption
is reasonable if the simulated variates are generated in
pendent of the values of the historical data, but is violat
by trace-driven simulations.

Shifted distributions, like the shifted gamma above, a
used more frequently in simulation but are less frequen
studied from an analytic perspective. Perhaps this is beca
regularity conditions can fail to hold (the shifted gamm
is not a member of the regular exponential family, so a
nite dimensional conjugate prior distribution does not exi
maximum likelihood estimators may be ill-defined). Chic
(2000) gives an example of assessing a prior distribut
for a shifted gamma distribution, and illustrates the use
the adaptive rejection Metropolis sampler (ARMS) of Gilk
Best, and Tan (1995) to generate the samples from the p
terior distributions in Equations 5-6. The ARMS and oth
MCMC techniques may be required to work with posteri
distributions when nonregularity arises in general. Note t
improper prior distributions cannot be used when there
more than one candidate input distribution, as the arbitr
proportionality constant for an improperf3m|m (λm) would
cause Equation 5 to be ill-defined.

2.3 Nonparametric Bayes Methods

The previous approaches require that parametric model
used for input distributions. An alternate strategy is to u
empirical distributions (Law and Kelton 2000). Barton an
Schruben (1993) advocate bootstrapping to quantify unc
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ton and Schruben (2000) later propose several mechanis
for accounting for uncertainty about empirical distribution
including a Bayesian bootstrapping technique they call
randomized empirical distribution function (EDF).

The standard piecewise continuous EDF,Fe(·) assigns
probability according to the order statisticsx(1), . . . , x(n) of
the datax.

Fe(x) =


0 if x < x(1)
i−1
n−1 + x−x(i)

(n−1)(x(i+1)−x(i)) if x(i) ≤ x < x(i+1)

1 if x > x(n)
(8)

Rather than assigningFe(x(i)) = (i − 1)/(n− 1) determin-
istically, they note that the marginal distribution of thei-th
order statistic has a Beta(i, n−i+1) distribution. Therefore,
uncertainty about the EDF for a given random quantity
a simulation can be described by using atoms for the ED
that have the same distribution as the order statistics, rat
than using(i − 1)/(n− 1). This leads to the modification
in Figure 3 to the model average in Figure 2 to accou
for input uncertainty for empirical distributions. Figure 3
describes how to handle a single source of uncertain
Multiple sources are handled analogously.

1. Generate a sample ofn values from a uni-
form [0,1] distribution with ordered values
u[1], . . . , u[n].

2. SetF̂e(x(i)) = u[i], then smooth the EDF,
say, by linear interpolation as in Equation 8,
and use this as the input distribution (rather
than selecting a parametric distribution in
step 1 of Figure 2).

3. Conduct a simulation run using this em-
pirical distribution (step 2 of Figure 2).

4. Repeat for alln replications.

Figure 3: A randomized empirical distribution function
using a Bayesian bootstrap.

3 SENSITIVITY

Section 2 focuses on propagating input distribution and p
rameter uncertainty to simulation output in order to accou
for output uncertainty that is due to input uncertainty. Th
figure of merit is the mean outputEO [O | E] = E3[EO [O |
E,3]] given the dataE , averaged not only over stochasti
uncertainty of the system (random outputo for a givenλ),
but also over systemic uncertainty (an unknownλ).
113
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If we are interested in how input uncertainty affects
the mean system performance, we may be more interes
in properties of the conditional expectation of the outpu
given the inputs. More formally, ifθ is a vector of one or
more input parameters that describe sources of randomn
in a simulation, the mean response

η(θ) = EO [O | E, θ], (9)

gives information about how the unknown mean depend
on each input. This section examines properties of th
conditional expectation of the output, when input paramete
are unknown.

3.1 Output Response Metamodels

One approach to estimating the mean responseη(θ) as a
function of an unknownp-dimensional input vectorθ is to
posit a functional form

η(θ) =
k−1∑
i=0

βifi(θ) (10)

where theβi are unknown coefficients that are to be esti
mated, and thefi(θ) are suitably selected basis functions
To simplify, we presume thatθ is a vector of continuous
parameters, and do not include decision variables (para
eters under our control). When thefi(θ) are polynomials,
this is a polynomial regression model.

There are at least two distinct approaches. Georg
and McCulloch (1996) propose a stochastic search variab
selection (SSVS) technique. They use a normal linear mod
for the n-dimensional output vectoro,

o∼ N
(
3β, σ 2In

)
wheren is the number of replications,3 is then× k input
matrix (a function of the inputs),σ 2 is a scalar, andIn
is the identity matrix. Motivated by a desire to identify a
subsetλ∗1, . . . λ∗̀ of important factors, they propose a prior
distribution for the response parametersβ that allows for
the possibility that eachβi is either large in absolute value,
or near zero. This is done as a scale mixture of two norm
distributions, with indicator variablesγi = 0 or 1,

pβi |γi (βi) = (1− γi)N
(
0, τ2

i

)
+ γiN

(
0, c2

i τ
2
i

)
where

p(γi = 1) = 1− p(γi = 1) = hi.
The hyperparametersτi andci are set small and large respec-
tively so thatN (

0, τ2
i

)
is concentrated, andN (

0, c2
i τ

2
i

)
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is diffuse. The idea is that whenγi = 0, the coefficient
βi is probably quite small and can be ‘safely’ estimat
as 0. George and McCulloch (1996) also describe stra
gies for choosingτi , ci , hi , and a prior distribution for
σ 2. Cheng (1999) extends the SSVS, in part by presu
ing that the errors have an inverse Gaussian distributi
rather than a normal distribution. He uses the technique
fit a high-order polynomial response model to a compu
packet assembly/disassembly device simulation. Chipm
Hamada, and Wu (1997) describe prior distributions forβ

that account for complex aliasing, such effect sparsity a
effect heredity.

The approach advocated by Raftery, Madigan, a
Hoeting (1997) differs from George and McCulloch (199
in that there are 2k distinct candidate response mode
η1(θ), . . . , η2k (θ), each model corresponding to one of th
2k combinations of considering each of theβi to be zero
or nonzero. Raftery, Madigan, and Hoeting (1997) provi
desiderata to assess prior distributions for theβi , condi-
tional on the response model. Chick and Ng (2000) r
simulations to see if that approach can identify the true
sponse surface lnλ− ln(µ−λ) for the log of the stationary
mean occupancy of the M/M/1 queue. They propose
following 24 candidate response models, as functions of
unknown arrival and service rates,θ = (λ, µ):

• η1(λ, µ) = β0 + β1 lnµ+ β2 ln λ+ β3 ln(µ− λ)
• η2(λ, µ) = β0 + β1 lnµ+ β2 ln λ+ 0

•
...

• η13(λ, µ) = 0+ 0+ β2 ln λ+ β3 ln(µ− λ)
• η14(λ, µ) = 0+ 0+ β2 ln λ+ 0
• η15(λ, µ) = 0+ 0+ 0+ β3 ln(µ− λ)

Given 25 replications each for 4 different sampled inpu
(µi, λi, oi), they found the posterior marginal probabilit
for the correct functional form (η13) was much higher than
for competitor models (see Table 1).

Table 1: Posterior Probability (Prob.) of Several Propose
Functional Forms for the Log of the Stationary Occupanc
of an M/M/1 Queue; the Correct Model Is Heavily Favored
after 100 Replications

Prob. Response function
0.780 η13 = β2 ln λ+ β3 ln(µ− λ)
0.130 η9 = β1 lnµ+ β2 ln λ+ β3 ln(µ− λ)
0.073 η5 = β0 + β2 ln λ+ β3 ln(µ− λ)
0.013 η1 = β0 + β1 lnµ+ β2 ln λ+ β3 ln(µ− λ)
10−29 η2 = β0 + β1 lnµ+ β2 ln λ
...

...

10−102 η8 = β0
ial
ures

114
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3.2 Distribution of Conditional Expectation

Lee and Glynn (1999) estimate the distribution function
a conditional expectation, rather than its mean.

Pr2(EO [O | E, θ] ≤ o)

Applications of this type of estimation are risk manag
ment portfolios, where an option’s current value can b
expressed as a conditional expectation; and capacity exp
sion decisions, when the future demand is unknown a
the probability of having sufficient capacity is of centra
concern. Lee and Glynn (1999) use large deviation resu
to determine how to allocate computing time to two diffe
ent activities, sampling outputs for at a fixedλ to estimate
EO [O | E, λ], and sampling at differentλ to account for
input uncertainty. See Lee and Glynn (1999) for details

4 SELECTION PROCEDURES

Selection procedures provide a means to allocate comp
budgets to run simulation replications so that the best syst
can be identified. Here, best is taken to mean the syst
with the highest (or lowest) expected value of the outpu
Since the output is random, the system selected as be
not necessarily best.

Figure 4 gives the general structure of a selection p
cedure. Selection procedures are distinguished by the w
they accomplish each step. Indifference-zone (IZ) proc
dures have been the standard means to identify the b
simulated system (Goldsman and Nelson 1998). They
based on a frequentist analysis that guarantees that the
system will be identifed as best with a probability that e
ceeds some thresholdP ∗, subject to an indifference zone
constraint (the best system is at leastδ∗ better than all of
the others, whereδ∗ is the smallest practically significan
difference to a decision maker). Many IZ procedures a
statistically conservative, and require many replications ev
for systems that perform poorly during the first stage
replications. Nelson, Swann, Goldsman, and Song (20
combine a subset selection step with IZ ideas to reduce
expected number of simulation replications required wh
there are noncompetitive systems.

Two distinct Bayesian formulations have been propos
as an alternate means to improve the efficiency of select
procedures. Rather than suggesting how many replicati
are required to guarantee a given probability of corre
selectionP ∗, focus is on allocating replications to improve
the Bayesian posterior probability of correct selection. T
two formulations share features described in Section 4
and are distinguished in Section 4.2 and Section 4.3. Ino
Chick, and Chen (1999) indicate that all the sequent
Bayesian procedures here, and the two stage proced
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1. Run an initial stage of replications (say,n0
replications per system).

2. Determine how many more replicationsni
to run for each system,i = 1, . . . , k.

3. Run the replications additional replications.
4. If more replications are desired, go to step 2.
5. Select one system as best based on the

simulation output.

Figure 4: One generic selection procedure.

based on ideas in Section 4.3, perform favorably with respe
to the two-stage IZ procedure of Rinott (1978).

4.1 Bayesian Selection Procedure Basics

Suppose that the best ofk systems is to be selected, tha
the simulation outputoi,j for replicationj of systemi is
normally distributed with an unknown meanwi and variance
σ 2
i (i = 1, . . . , k; j = 1, . . .). For the moment, presume

that theoi,j are jointly independent. A Bayesian approac
considers the unknown mean of systemi to be a random
variableWi whose realizationwi is to be inferred with
Bayes’ rule and the outputoi = (oi,1, . . . , oi,mi ) seen so
far. We usewi rather thanµi to follow the convention
of writing random variables (realizations) in upper (lower
case. We also refer to the precision of a normal distributio
λi = 1/σ 2

i , rather than the variance. Setw = (w1, . . . , wk)

andλ = (λ1, . . . , λk).
Information from initial runs is used by assigning a

prior distribution and using Bayes’ rule to infer the value
of the unknown meanWi and precision3i . Here we use the
noninformative prior pdff (wi, λi) ∝ 1/λi . After observing
the outputoi = (oi,1, . . . , oi,mi ), determine the sample mean
ōi and sample variancêσ 2

i . The joint posterior distribution
for Wi and3i is a normal-gamma distribution (de Groo
1970),

3i ∼ G
(
(mi − 1)/2, σ̂ 2

i (mi − 1)/2
)

(11)

Wi |λi ∼ N
(
ōi , λ

−1
i /mi

)
. (12)

where a gamma distributionG (α, β) has meanα/β and
varianceα/β2, and a normal distributionN (

µ, σ 2
)

has
meanµ and varianceσ 2. Further, the marginal distribution
and frequentist confidence interval for the unknown mea
are both described by the same three parameter Stude
distribution,

Wi ∼ St
(
ōi , mi/σ̂

2
i , mi − 1

)
, (13)
11
t

,

t-t

where the three parameter Student-t distributionSt (µ, κ, ν)
has meanµ, precisionκ, and degrees of freedomν. When
ν > 2, the variance isκ−1ν/(ν − 2) (not κ−1). If the
varianceσ 2

i is known, the noninformative prior forwi is
f (wi) ∝ 1, and the posterior distribution givenoi is

Wi ∼ N
(
ōi , σ

2
i /mi

)
. (14)

Independent replications and independent noninfo
mative prior distributions imply that theWi are jointly
independent. The distributions in Equation 13 (i =
1, . . . , k) determine the Bayesian probability of correc
selection (PCSBayes), defined as the posterior proba
bility that the meanw(k) of the selected system is
the meanw[k] of the ‘best’, given all output (E ={
oi,j : i = 1, . . . , k; j = 1, . . . , mi

}
),

PCSBayes
def= Pr

({
w : w(k) = w[k]

} | E) , (15)

The quantity PCSBayesmeasures theprobabilistic evidence
for correct selectionafter a given set of replications have
been run,not the probability that a procedure will select
known best system in repeated applications of a proced
to the same selection problem.

The procedures in Section 4.2 and Section 4.3 a
motivated in different ways by the Bayesian formulation
The procedures allocate replications in an attempt to impro
PCSBayes, and do not yet make claims about prespecifie
frequentist guarantees forP ∗.

4.2 OCBA Procedures

TheOCBA algorithms of Chen (1996) and Chen, Chen, Lin
and Yücesan (1999) are motivated by a thought experim
regarding the distribution of the unknown mean. The id
is to approximate how a few additional replications mig
change PCSBayes, assuming that (a) the system with th
best sample mean based on replications seen so far is t
selected, (b) the effect of an additional small numberni of
replications for systemi reduces the variance in the estima
in the unknown mean by changing the factor ofσ̂ 2

i /mi to a
factor ofσ̂ 2

i /(mi+ni). This type of ‘variance adjustment’ is
also used in Law and Kelton (2000) to estimate the numb
of additional replications needed to obtain a confiden
interval of a prespecified size.

Chen (1996) makes several approximations that a
designed to reduce the CPU time to allocate the additio
replications (step 2 of Figure 4) for the next stage of th
procedure. One, PCSBayes is approximated by a lower
bound called the approximate probability of correct selecti
(APCS).

APCS
def=

∏
j :j 6=(k)

Pr
({

w : wj < w(k)
} | E) (16)
5
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Two, the sample variance is presumed to be a good estim
of the known variance, and Equation 14 is used rather th
Equation 13. The thought experiment presumes that if
additional ni replications are allocated for systemi, but
none are allocated for the others, then

W̃i ∼ N
(
ōi , σ̂

2
i /(mi + ni)

)
W̃j ∼ N

(
ōj , σ̂

2
j /mj

)
for j 6= i.

This induces anestimated approximate probability of correc
selection(EAPCS) of

EAPCSi =
∏

j :j 6=(k)
Pr
({

w̃ : w̃j < w̃(k)
} | E) , (17)

where the probability is with respect to the distribution o
W̃ = (W̃1, . . . , W̃k) rather thanW.

Replications are allocated at each stage to incre
an estimate of the improvement in correct selectio
EAPCSi−APCS. Chen and coauthors provide a number
variations on this central theme that make various asym
totic approximations for allocating replications at each stag
The procedures can stop either when the APCS reache
satisfactorily high level, or when the computer budget f
replications is exhausted. The procedures are empirica
effective at identifying the best system, particularly whe
run sequentially.

4.3 Value of Information Procedures

Another approach attempts to select an additional num
of replications for each system to improve theexpected
value of informationgained from those replications, rathe
than using the thought experiment of Section 4.2. Info
mation gains for the probability of correct selection a
measured with respect to the 0-1 loss function (the loss i
if the best is correctly selected, and is 1 for incorrect sele
tions). Alternately replications can be allocated to redu
the expected opportunity cost loss of a potentially inco
rect selection. Gupta and Miescke (1996) provide a form
problem statement and indicate that closed-form solutio
are known only for special cases, and that computation
an optimal solution is numerically intensive.

Chick and Inoue (2000b) propose a surrogate object
(the sum over pairwise comparisons between the current b
at each other system for the expected value of informatio
that is readily computed under general conditions, and der
two-stage and sequential procedures for both loss functio
assuming that replications are independent. Chick a
Inoue (2000a) derive two stage procedures, one for e
loss function, assuming that common random numbers a
screening are used.
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To compute the expected value of information that w
be gained from running more replications, the probabili
that a given system will be selected as ‘best’ (the syste
with the highest posterior mean performance) is require
This requires thepredictive distributionfor the outputYi =
(Yi,1, . . . , Yi,ni ) to be observed, as well as the predictive di
tribution for the posterior meanZi = E[Oi,mi+1 | oi ,Yi].
Since uncertainty aboutWi,3i given oi is given by Equa-
tions 11-12, and theYi,j is conditionally independent given
that mean and precision, one can show (Bernardo and Sm
1994) that

Yi,j ∼ St

(
ōi ,

mi

(mi + 1)σ̂ 2
i

, mi − 1

)
(18)

Zi ∼ St

(
ōi ,

mi(mi + ni)
ni σ̂

2
i

, mi − 1

)
. (19)

Onceyi is observed, thenzi = E[Oi,mi+1 | oi , yi] is readily
computed. The system with the maximalzi after all output
is observed is selected as best.

The ‘value of information’procedures select the numb
of replications to be done (n1, . . . , nk) to alter the distribu-
tions of the yet-to-be-observed posterior mean performan
of each system (Z1, . . . , Zk) to improve the value of infor-
mation of those replications. See Chick and Inoue (2000
and Chick and Inoue (2000b) for theory, and for numeric
results that show the procedures compare favorably w
some indifference-zone procedures.

5 CLOSING REMARKS

Bayesian methods provide an alternate way of viewi
issues that arise during a simulation analysis. This pa
described a subset of the ways that Bayesian, decisi
theoretic methods can be applied to resolve issues ab
input uncertainty, to select input distributions, to evalua
how output uncertainty is affected by input uncertaint
and to efficiently identify the best of a set of simulate
alternatives. Other issues that may be important to addr
include (i) data collection plans that reduce input parame
uncertainty in a way that reduces output uncertainty; (
a more comprehensive integration of input uncertainty in
the selection procedures; (iii) further integration of multip
sources of information about input or output characteristic
(iv) inclusion of multiple attributes in the decision-makin
process that is served by simulation; (v) a further account
of different types of correlation in Bayesian inference (v
antithetic variates, or from batch to batch, etc.) (vi) th
incorporation of derivative information into response mod
estimates.
6
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