ABSTRACT

This paper reviews statistical methods for analyzing output data from computer simulations of single systems. In particular, it focuses on the estimation of steady-state system parameters. The estimation techniques include the replication/deletion approach, the regenerative method, the batch means method, and the standardized time series method.

1 INTRODUCTION

The primary purpose of most simulation studies is the approximation of prescribed system parameters with the objective of identifying parameter values that optimize some system performance measures. If some of the input processes driving a simulation are random, then the output data are also random and runs of the simulation program only result in estimates of system performance measures. Unfortunately, a simulation run does not usually produce independent, identically distributed (i.i.d.) observations; therefore “classical” statistical techniques are not directly applicable to the analysis of simulation output.

A simulation study consists of several steps such as data collection, coding and verification, model validation, experimental design, output data analysis, and implementation. This paper focuses on statistical methods for computing confidence intervals for system performance measures from output data.

There are two types of simulations with regard to output analysis:

Finite-horizon simulations. In this case the simulation starts in a specific state, such as the empty and idle state, and is run until some terminating event occurs. The output process is not expected to achieve any steady-state behavior and any parameter estimated from the output data will be transient in the sense that its value will depend upon the initial conditions. An example is the simulation of a vehicle storage and distribution facility for a week.

Steady-state simulations. The purpose of a steady-state simulation is the study of the long-run behavior of the system of interest. A performance measure of a system is called a steady-state parameter if it is a characteristic of the equilibrium distribution of an output stochastic process. An example is the simulation of a continuously operating communication system where the objective is the computation of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from terminating simulations. Section 3 reviews approaches for removing bias due to initial conditions in steady-state simulations. Section 4 presents techniques for point and interval estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system until n output data \( X_1, X_2, \ldots, X_n \) are collected with the objective of estimating \( \mu = E(X_n) \), where \( \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \) is the sample mean of the data. For example, \( X_i \) may be the transit time of unit \( i \) through a network of queues or the total time station \( i \) is busy during the \( i \)th hour. Clearly, \( \bar{X}_n \) is an unbiased estimator for \( \mu \). Unfortunately, the \( X_i \)'s are generally dependent random variables making the estimation of the variance \( \text{Var}(\bar{X}_n) \) a nontrivial problem. In many queueing systems the \( X_i \)'s are positively correlated making the familiar estimator \( S^2(n)/n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2/n(n-1) \) a highly biased estimator of \( \text{Var}(\bar{X}_n) \). In particular, if the \( X_i \)'s are positively correlated, one has \( E[S^2(n)/n] < \text{Var}(\bar{X}_n) \).

To overcome this problem, one can run \( k \) independent replications of the system simulation. Assume that run \( i \) produces the output data \( X_{i1}, X_{i2}, \ldots, X_{in} \). Then the sample means

\[
Y_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij}
\]

are i.i.d. random variables,

\[
\bar{Y}_k = \frac{1}{k} \sum_{i=1}^{k} Y_i
\]
is also an unbiased estimator of $\mu$, and

$$\hat{\gamma}_R = \frac{1}{k-1} \sum_{i=1}^{k} (Y_i - \bar{Y}_k)^2$$

is an unbiased estimator of $\text{Var}(\bar{X}_n)$. If in addition $n$ and $k$ are sufficiently large, an approximate $1 - \alpha$ confidence interval for $\mu$ is

$$\bar{Y}_k \pm t_{k-1,1-\alpha/2}\sqrt{\frac{\hat{\gamma}_R}{k}}, \quad (1)$$

where $t_{k,\gamma}$ represents the $\gamma$-quantile of the $t$ distribution with $d$ degrees of freedom.

Alexopoulos and Seila (1998, section 7.2.2) and Law and Kelton (2000) review sequential procedures for determining the number of replications required to estimate $\mu$ with a fixed absolute or relative precision. The procedure for constructing a $1 - \alpha$ confidence interval for $\mu$ with a small absolute error $|\bar{Y}_k - \mu| \leq \beta$ is based on Chow and Robbins (1965) (see also Nadas 1969). It stops when the halfwidth $t_{k-1,1-\alpha/2}\sqrt{\frac{\hat{\gamma}_R}{k}} \leq \beta$. The method for obtaining an estimate with a relative error $|\bar{Y}_k - \mu|/|\mu|$ bounded from above by $\gamma$ with probability at least $1 - \alpha$ has performed well for initial sample size $k_0 \geq 10$ and $\gamma \leq 0.15$.

The method of replications can also be used for estimating performance measures other than means. For example, suppose that we want to estimate the $p$-quantile, say $\xi_p$, of the average queue size in a single-server queueing system during a fixed time window. We run $k$ independent replications, denote by $Y_i$ the average observed queue length during replication $i$, and let $Y_{(1)} < Y_{(2)} < \cdots < Y_{(k)}$ be the order statistics corresponding to the $Y_i$'s. Then a point estimate for $\xi_p$ is

$$\hat{\xi}_p = \begin{cases} 
Y_{(kp)} & \text{if } kp \text{ is an integer} \\
Y_{((kp+1)/2)} & \text{otherwise} 
\end{cases}$$

and a confidence interval for $\xi_p$ is described in Alexopoulos and Seila (1998, section 7.3.2).

3 INITIALIZATION PROBLEMS FOR STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulations is the removal of the initialization bias. Suppose that $\{X_i : i \geq 1\}$ is a discrete-time output stochastic process from a single run of a steady-state simulation with initial conditions $I$ and assume that, as $n \to \infty$, $P(X_n \leq x | I) \to P(X \leq x)$, where $X$ is the corresponding steady-state random variable. The steady-state mean of the process $\{X_i\}$ is $\mu = \lim_{n \to \infty} E(X_n | I)$. The problem with the use of the estimator $\bar{X}_n$ for a finite $n$ is that $E(\bar{X}_n | I) \neq \mu$.

The most commonly used method for eliminating the bias of $\bar{X}_n$ identifies a index $1 \leq l \leq n - 1$ and truncates the observations $X_1, \ldots, X_l$. Then the estimator

$$\bar{X}_{n,l} = \frac{1}{n-l} \sum_{i=l+1}^{n} X_i$$

is generally less biased than $\bar{X}_n$ because the initial conditions primarily affect data at the beginning of a run. Several procedures have been proposed for the detection of a cutoff index $l$ (see Chance and Schruben (1992); Fishman 1996; Gafarian et al. 1978; Goldsman et al. (1994); Kelton 1989; Ockerman (1995); Schruben 1982; Schruben et al. 1983; Wilson and Pritsker 1978a,b).

The graphical procedure of Welch (1983) is popular due to its simplicity and generality. This method uses $k$ independent replications with the $i$th replication producing observations $X_{i1}, X_{i2}, \ldots, X_{in}$ and computes the averages

$$\tilde{X}_j = \frac{1}{k} \sum_{j=1}^{k} X_{ij}, \quad j = 1, \ldots, n.$$  

Then for a given time window $w$, the procedure plots the moving averages

$$\tilde{X}_j(w) = \begin{cases} 
\frac{1}{2w+1} \sum_{m=-w}^{w} \tilde{X}_{j+m} & w+1 \leq j \leq n-w \\
\frac{1}{2j} \sum_{m=-j+1}^{j} \tilde{X}_{j+m} & 1 \leq j \leq w 
\end{cases}$$

against $j$. If the plot is reasonably smooth, then $l$ is chosen to be the value of $j$ beyond which the sequence of moving averages converges. Otherwise, a different time window is chosen and a new plot is drawn. The choice of $w$ may be a difficult problem for congested systems with output time series having autocorrelation functions with very long tails (see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state mean $\mu$ of a discrete-time output process. Analogous methods for analyzing continuous-time output data are described in a variety of texts (Bratley, Fox, and Schrage 1987; Fishman 1978; Law and Kelton 2000). The process $\{X_i\}$ is called stationary if the joint distribution of $X_{i+j}, X_{i+j+2}, \ldots, X_{i+j+k}$ is independent of $i$ for all indices $j, j, \ldots, j_k$ and all $k \geq 1$. If $E(X_i) = \mu$, $\text{Var}(X_i) < \infty$ for all $i$, and the $\text{Cov}(X_i, X_{i+j})$ is independent of $i$, then $\{X_i\}$ is called weakly stationary.
4.1 The Replication/Deletion Approach

This approach runs $k$ independent replications, each of length $n$ observations, and uses the method of Welch (1983) to discard the first $l$ observations from each run. One then uses the i.i.d. sample means

$$Y_i(l, n) = \frac{1}{n-l} \sum_{j=l+1}^{n} X_{ij}$$

to compute the point estimate

$$\bar{Y}_k(l, n) = \frac{1}{k} \sum_{i=1}^{k} Y_i(l, n)$$

and the approximate $1 - \alpha$ confidence interval for $\mu$

$$\bar{Y}_k(l, n) \pm t_{k-1,1-\alpha/2} \sqrt{\hat{\sigma}_R(n, l)/k}, \quad (2)$$

where $\hat{\sigma}_R(n, l)$ is the sample variance of the $Y_i(l, n)$’s.

The method is simple and general, but involves the choice of three parameters, $l$, $n$ and $k$. Here are a few points: (a) As $l$ increases for fixed $n$, the “systematic” error in each $Y_i(l, n)$ due to the initial conditions decreases. However, the sampling error increases because of the smaller number of observations. (b) As $n$ increases for fixed $l$, the systematic and sampling errors in $Y_i(l, n)$ decrease. (c) The systematic error in the sample means $Y_i(l, n)$ cannot be reduced by increasing the number of replications $k$. (d) For fixed number of observations per replication $n-l$ and under a mild conditions on the first two moments of $X_i(l, n)$, the confidence interval (2) is asymptotically valid only if $l/\ln k \rightarrow \infty$ as $k \rightarrow \infty$ (Fishman 2000). This means that as one makes more runs in an attempt to compute a narrower confidence interval, the truncation index $l$ must increase faster than $\ln k$ for the confidence interval to achieve the nominal coverage. This requirement is hard to implement in practice.

The reader should also keep in mind that this method is also potentially wasteful of data as the truncated portion is removed from each replication. The regenerative method (section 4.2) and the batch means method (section 4.3) seek to overcome these disadvantages.

4.2 The Regenerative Method

This method assumes the identification of time indices at which the process $\{X_i\}$ probabilistically starts over and uses these regeneration epochs for obtaining i.i.d. random variables which can be used for computing point and interval estimates for the mean $\mu$. The method was proposed by Crane and Iglehart (1974a,b, 1975) and Fishman (1973, 1974). More precisely, assume that there are (random) time indices $1 \leq T_1 < T_2 < \cdots$ such that the portion $\{X_{T_i + j}, j \geq 0\}$ has the same distribution for each $i$ and is independent of the portion prior to time $T_i$. The portion of the process between two successive regeneration epochs is called a cycle. Let $Y_i = \sum_{j=l}^{r_i-1} X_j$ and $Z_i = T_{i+1} - T_i$ for $i = 1, 2, \ldots$ and assume that $E(Z_i) < \infty$. Then the mean $\mu$ is given by $\mu = E(Y_1)/E(Z_1)$. 

Now suppose that one simulates the process $\{X_i\}$ over $n$ cycles and collects the observations $Y_1, \ldots, Y_n$ and $Z_1, \ldots, Z_n$. Then $\bar{\mu} = \bar{Y}_n/\bar{Z}_n$ is a strongly consistent estimator of $\mu$. Furthermore, confidence intervals for $\mu$ can be constructed by using the random variables $Y_i - \mu Z_i, i = 1, \ldots, n$ and the central limit theorem (see Iglehart 1975).

The regenerative method is difficult to apply in practice because the majority of simulations have either no regenerative points or very long cycle lengths. Two classes of systems this method has successfully been applied to are inventory systems and highly reliable communications systems with repairs.

4.3 The Batch Means Method

The method of batch means is frequently used to estimate the steady-state mean $\mu$ or the $\text{Var}(\bar{X}_n)$ (for finite $n$) and owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that the data $X_1, \ldots, X_n$ are from a weakly stationary process with $\lim_{n \rightarrow \infty} n\text{Var}(\bar{X}_n) = \sigma^2 = \infty$. (The parameter $\sigma^2$ is called the time-average variance of the process $\{X_i\}$.) Then split the data into $k$ batches, each consisting of $b$ observations. (Assume $n = kb$.) The $i$th batch consists of the observations $X_{(i-1)b+1}, X_{(i-1)b+2}, \ldots, X_{ib}$, for $i = 1, 2, \ldots, k$, and the $i$th batch mean is given by

$$Y_i(b) = \frac{1}{b} \sum_{j=1}^{b} X_{(i-1)b+j}.$$ 

For fixed $m$, let $\sigma^2 = \text{Var}(\bar{X}_m)$. Since the batch means process $\{Y_i(b), i \geq 1\}$ is also weakly stationary, some algebra yields

$$\sigma^2_n = \frac{\sigma^2}{k} \left( 1 + \frac{na^2_e - b\sigma^2}{b\sigma^2} \right). \quad (3)$$

As a result, $\sigma^2 / k$ approximates $\sigma^2$ with error that diminishes as first $n \rightarrow \infty$ and then $b \rightarrow \infty$ with $b/n \rightarrow 0$. Equivalently, the correlation among the batch means diminishes as $b$ and $n$ approach infinity with $b/n \rightarrow 0$. 

103
To use the last limiting property, one forms the grand batch mean
\[
\bar{X}_n = \frac{1}{k} \sum_{i=1}^{k} Y_i(b),
\]
estimates \(\sigma_b^2\) by
\[
\hat{V}_B(n, k) = \frac{1}{k - 1} \sum_{i=1}^{k} (Y_i(b) - \bar{X}_n)^2,
\]
and computes the following approximate \(1 - \alpha\) confidence interval for \(\mu\):
\[
\bar{X}_n \pm t_{k-1,1-\alpha/2} \sqrt{\hat{V}_B(n, k)/k}.
\] (4)

The main problem with the application of the batch means method in practice is the choice of the batch size \(b\). The literature contains several batch selection approaches for fixed sample size; see Conway (1963), Fishman (1978), Law and Carson (1979), Mechanic and McKay (1966), and Schriber and Andrews (1979). Schmeiser (1982) reviews the above procedures and concludes that selecting between 10 and 30 batches should suffice for most simulation experiments. The major drawback of these methods is their inability to yield a consistent variance estimator.

4.4 Consistent Estimation Batch Means Methods

These methods assume that a central limit theorem holds
\[
\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} \sigma_{\infty} N(0, 1) \quad \text{as} \quad n \to \infty \tag{5}
\]
and aim at constructing a consistent estimator for \(\sigma_{\infty}^2\) and an asymptotically valid confidence interval for \(\mu\).

Chien et al. (1997) considered stationary processes and, under quite general moment and sample path conditions, showed that as both \(b, k \to \infty\), MSE(\(\hat{V}_k(b)\)) \to 0. Notice that mean squared error consistency differs from consistency.

The limiting result (5) is implied under the following two assumptions, where \(\{W(t), t \geq 0\}\) is the standard Brownian motion process (see Resnick 1994, Chapter 6).

**Assumption of Weak Approximation (AWA).**

\[
n(\overline{X}_n - \mu) / \sigma_{\infty} \xrightarrow{d} W(n) \quad \text{as} \quad n \to \infty.
\]

**Assumption of Strong Approximation (ASA).** There exists a constant \(\lambda \in (0, 1/2]\) and a finite random variable \(C\) such that, with probability one,
\[
|n(\overline{X}_n - \mu) - \sigma_{\infty} W(n)| \leq Cn^{1/2-\lambda} \quad \text{as} \quad n \to \infty.
\]

The ASA is not restrictive as it holds under relatively weak assumptions for a variety of stochastic processes including Markov chains, regenerative processes and certain queueing systems (see Damerdji 1994). The constant \(\lambda\) is closer to 1/2 for processes having little autocorrelation, while it is closer to zero for processes with high autocorrelation.

4.5 Batching Rules

Fishman and Yarberry (1997) and Fishman (1996, Chapter 6) presented a thorough discussion of batching rules. Equation (3) suggests that fixing the number of batches and letting the batch size grow as \(n \to \infty\) ensures that \(\sigma_b^2/k \to \sigma_{\infty}^2\). This motivates the Fixed Number of Batches (FNB) rule that sets the number of batches at \(k\) and uses batch sizes \(b_n = \lfloor n/k \rfloor\) as \(n\) increases.

The FNB rule along with AWA imply that, as \(n \to \infty\),
\[
\bar{X}_n \xrightarrow{p} \mu
\]
and
\[
\frac{\bar{X}_n - \mu}{\sqrt{\hat{V}_B(n, k)/k}} \xrightarrow{d} t_{k-1}
\]
(see Glynn and Iglehart 1990). Hence, (4) is an asymptotically valid confidence interval for \(\mu\). Unfortunately, the FNB rule has two major limitations: (a) Since \(b_n \hat{V}_k(b)\) is not a consistent estimator of \(\sigma_{\infty}^2\), the confidence interval (4) tends to be wider than the interval a consistent estimation method would produce. (b) Statistical fluctuations in the halfwidth of the confidence interval (4) do not diminish relative to statistical fluctuation in the sample mean (see Fishman 1996, pp. 544–545).

The limitations of the FNB rule can be removed by simultaneously increasing the batch size and the number of batches. Indeed, assume that ASA holds and consider batch sizes of the form \(b_n = \lfloor n^\theta \rfloor\), \(\theta \in (1 - 2\lambda, 1)\). Then as \(n \to \infty\), \(\bar{X}_n \xrightarrow{a.s.} \mu\), \(b_n \hat{V}_k(b_n) \xrightarrow{a.s.} \sigma_{\infty}^2\), and
\[
Z_{kn} = \frac{\bar{X}_n - \mu}{\sqrt{\hat{V}_B(n, k_n)/k_n}} \xrightarrow{d} N(0, 1)
\] (6)
(see Damerdji 1994). The last display implies that
\[
\bar{X}_n \pm t_{k_n-1,1-\alpha/2} \sqrt{\hat{V}_B(n, k_n)/k_n}
\]
is an asymptotically valid \(1 - \alpha\) confidence interval for \(\mu\). In particular, the Square Root (SQRT) rule that uses \(\theta = 1/2\) (\(b_n = \lfloor \sqrt{n} \rfloor\), \(k_n = \lfloor \sqrt{n} \rfloor\)) is valid if \(1/4 < \lambda < 1/2\). Notice that the last inequality is violated by processes having high autocorrelation (\(\lambda \approx 0\)).

The motivation for the SQRT rule comes from Chien (1989), who (under some additional moment conditions)
showed that the convergence of $Z_{kn}$ to the $N(0, 1)$ distribution is fastest if both $b_n$ and $k_n$ grow proportionally to $\sqrt{n}$. Unfortunately, in practice the SQRT rule tends to seriously underestimate the $\text{Var}(\bar{X}_n)$ for fixed $n$.

With the contrasts between the FNB and SQRT rules in mind, Fishman and Yarberry proposed two procedures that dynamically shift between the two rules. Both procedures perform “interim reviews” and compute confidence intervals at times $n_l \approx n_l^2l^{-1}$, $l = 1, 2, \ldots$. The correlation test for the batch means is based on von Neumann's statistic

$$C(n, k_n) = 1 - \frac{\sum_{i=2}^{k_n} (Y_i(b_n) - Y_{i-1}(b_n))^2}{2 \sum_{i=1}^{k_n} (Y_i(b_n) - \bar{X}_n)^2}$$

(see von Neumann 1941ab; Young 1941).

**The LBATCH Procedure.** At time $n_l$, if the hypothesis test detects autocorrelation between the batch means, the batching for the next review is determined by the FNB rule. If the test fails to detect correlation, all future reviews omit the test and employ the SQRT rule.

**The ABATCH Procedure.** If at time $n_l$ the hypothesis test detects correlation between the batch means, the next review employs the FNB rule. If the test fails to detect correlation, the next review employs the SQRT rule.

Both procedures yield random sequences of batch sizes. Under relatively mild assumptions, these sequences imply convergence results analogous to (6). The respective algorithms require $O(n)$ time and $O(\log_2 n)$ space, where $n$ is the desired sample size (see Alexopoulos et al. 1997 and Yarberry 1993). Although like complexities are known for static fixed batch size algorithms, the dynamic setting of the LBATCH and ABATCH procedures offers an important additional advantage not present in the static approach. As the analysis evolves with increasing sample path length, it allows a user to assess how well the estimated variance of the sample mean stabilizes. This assessment is essential to gauge the quality of the confidence interval for the sample mean. The LABATCH.2 implementation is the only computer package that automatically generates the data for this assessment. C, FORTRAN and SIMSCRIPT II.5 codes of LABATCH.2 can be downloaded via anonymous ftp from the site http://www.or.unc.edu/~gfish/labatch.2.html.

### 4.5.1 Overlapping Batch Means

An interesting variation of the traditional batch means method is the method of overlapping batch means (OBM) proposed by Meketon and Schmeiser (1984). For given batch size $b$, this method uses all $n - b + 1$ overlapping batches to estimate $\mu$ and $\text{Var}(\bar{X}_n)$. The first batch consists of observations $X_1, \ldots, X_b$, the second batch consists of $X_2, \ldots, X_{b+1}$, etc. The OBM estimator of $\mu$ is

$$\tilde{Y}_O = \frac{1}{n - b + 1} \sum_{i=1}^{n-b+1} Y_i(b),$$

where

$$Y_i(b) = \frac{1}{b} \sum_{j=i}^{i+b-1} X_j, \quad i = 1, \ldots, n - b + 1$$

are the respective batch means, and has sample variance

$$\hat{\text{Var}}_O = \frac{1}{n - b} \sum_{i=1}^{n-b+1} (Y_i(b) - \tilde{Y}_O)^2.$$

The following list contains properties of the estimators $\tilde{Y}_O$ and $\hat{\text{Var}}_O$: (a) The OBM estimator is a weighted average of non-overlapping batch means estimators. (b) Asymptotically (as $n, b \to \infty$ and $b/n \to 0$), the OBM variance $\hat{\text{Var}}_O$ and the non-overlapping batch means variance estimator $\hat{\text{Var}}_B = \hat{\text{Var}}(\bar{X}_n)$ have the same expectation, but $\text{Var}(\tilde{Y}_O)/\text{Var}(\hat{\text{Var}}_B) \to 2/3$ (Meketon and Schmeiser 1984). (c) The behavior of $\text{Var}(\tilde{Y}_O)$ appears to be less sensitive to the choice of the batch size than the behavior of $\text{Var}(\hat{\text{Var}}_B)$ (Song and Schmeiser 1995, Table 1). (d) If $\{X_i\}$ satisfies ASA and $\{b_n\}$ is a sequence of batches with $b_n = \lfloor n^{1-\theta} \rfloor$, $\theta \in (1 - 2\lambda, 1)$ and $b_n^2/n \to 0$ as $n \to \infty$, then (Damerdji 1994) $b_n \tilde{Y}_O \overset{a.s.}{\longrightarrow} \sigma_\infty^2$.

Welch (1987) noted that both traditional batch means and overlapping batch means are special cases of spectral estimation at frequency 0 and, more importantly, suggested that overlapping batch means yield near-optimal variance reduction when one forms sub-batches within each batch and applies the method to the sub-batches. For example, a batch of size 64 is split into 4 sub-batches and the first (overlapping) batch consists of observations $X_1, \ldots, X_{64}$, the second consists of observations $X_{17}, \ldots, X_{80}$, etc.

### 4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). The standardized time series is defined by

$$T_n(t) = \frac{\lfloor nt \rfloor (\bar{X}_n - \bar{X}_{\lfloor nt \rfloor})}{\sigma_\infty \sqrt{n}}, \quad 0 \leq t \leq 1$$

and, under some mild assumptions (e.g., strict stationarity and $\phi$-mixing),

$$(\sqrt{n}(\bar{X}_n - \mu), \sigma_\infty T_n) \overset{d}{\longrightarrow} (\sigma_\infty W(1), \sigma_\infty B).$$
where \( \{B(t) : t \geq 0\} \) is the standard Brownian bridge process (see Billingsley 1968). Informally, \( \{X_i\} \) is \( \phi \)-mixing if \( X_i \) and \( X_{i+j} \) are approximately independent for large \( j \).

If \( A = \int_0^\infty \sigma_x B(t) \, dt \) is the area under \( B \), then the identity

\[
E(A^2) = \frac{\sigma_x^2}{12}
\]

implies that \( \sigma_x^2 \) can be estimated by multiplying an estimator of \( E(A^2) \) by 12. Suppose that the data \( X_1, \ldots, X_n \) are divided into \( k \) (contiguous) batches, each of size \( b \). Then for sufficiently large \( n \) the random variables

\[
A_i = \sum_{j=1}^b \frac{(n+1)/2-j}{b} X_{(i-1)b+j}, \quad i = 1, \ldots, k
\]

become approximately i.i.d. normal and an estimator of \( E(A^2) \) is

\[
\hat{E}(A^2) = \frac{1}{(b^3-b)k} \sum_{i=1}^k A_i^2.
\]

Hence an (approximate) \( 1 - \alpha \) confidence interval for \( \mu \) is

\[
\hat{Y}_k \pm t_{k,1-\alpha/2} \sqrt{\hat{V}_T/n},
\]

where

\[
\hat{V}_T = 12\hat{E}(A^2).
\]

The standardized time series method is easy to implement and has asymptotic advantages over the batch means method (see Goldsman and Schruben 1984). However, in practice it can require prohibitively long runs as noted by Sargent, et al. (1992). Some useful theoretical foundations of the method are given in Glynn and Iglehart (1990). Additional developments on the method, as well as other standardized time series estimators, are contained in Goldsman et al. (1990) and Goldsman and Schruben (1984, 1990). Finally, Damerdji (1994) shows that under ASA in section 4.3, batching sequences with \( b_n = \lceil n^{\theta} \rceil \), \( \theta \in (1 - 2\lambda, 1) \), yield asymptotically consistent estimators for the process variance \( \sigma_x^2 \).

4.8 Multivariate Estimation

Frequently, the output from a single simulation run is used for estimating several system parameters. The estimators of these parameters are typically correlated. As an example, consider the average customer delays at two stations on a path of a queueing network. In general, Bonferroni’s inequality can be used for computing a conservative confidence coefficient for a set of confidence intervals. Indeed, suppose that \( D_i \) is a \( 1 - \alpha \) confidence interval for the parameter \( \mu_i, i = 1, \ldots, k \). Then

\[
P \left( \bigcap_{i=1}^k \{\mu_i \in D_i\} \right) \geq 1 - \sum_{i=1}^k \alpha_i.
\]

This result can have serious implications as for \( k = 10 \) and \( \alpha_i = 0.10 \) the r.h.s. of the above inequality is equal to 0. If the overall confidence level must be at least \( 1 - \alpha \), then the \( \alpha_i \)'s can be chosen so that \( \sum_{i=1}^k \alpha_i = \alpha \). The existing multivariate estimation methods include Charnes (1989, 1990, 1991) and Chen and Seila (1987).

REFERENCES


Chien, C., D. Goldsman, and B. Melamed. 1997. Large-

Conway, R. W. 1963. Some tactical problems in digital

Chow, Y. S., and H. Robbins. 1965. On the asymptotic


Damerdji, H. 1994. Strong consistency of the variance

Fishman, G. S. 1973. Statistical analysis for queueing

Fishman, G. S. 1974. Estimation of multiserver queueing

Fishman, G. S. 1978. Principles of discrete event simula-

Fishman, G. S. 1996. Monte Carlo: Concepts, algorithms,


tion of the batch means method. INFORMS Journal


Glynn, P. W., and D. L. Iglehart. 1990. Simulation ana-

Goldsman, D., M. Meketon, and L. W. Schruben. 1990. Properties of

Goldsman, D., and L. W. Schruben. 1984. Asymptotic prop-


Heidelberger, P., and P. A. W. Lewis. 1984. Quantile esti-


Iglehart, D. L. 1975. Simulating stable stochastic systems,

Iglehart, D. L. 1976. Simulating stable stochastic systems,

Iglehart, D. L. 1978. The regenerative method for sim-

Iglehart, D. L. 1979. A sequential procedure for determining the


Iglehart, D. L. 1981. On detecting steady state in computer

Iglehart, D. L. 1982. Confidence intervals of the batch means

Iglehart, D. L. 1983. Batch means and equal variance esti-

Iglehart, D. L. 1984. Estimation of averages of dependent data in

Iglehart, D. L. 1985. Confidence intervals using standardized


Kelton, W. D. 1989. Random initialization methods in


Mechanic, H., and W. McKay. 1966. Confidence intervals


Nadas, A. 1969. An extension of the theorem of Chow

Nadas, A. 1969. An extension of the theorem of Chow

Ockerman, D. H. 1995. Initialization bias tests for stationary

Alexopoulos and Seila


Mechanic, H., and W. McKay. 1966. Confidence intervals


Nadas, A. 1969. An extension of the theorem of Chow

Nadas, A. 1969. An extension of the theorem of Chow

Ockerman, D. H. 1995. Initialization bias tests for stationary

Ph.D. Thesis, Curriculum in Operations

Ph.D. Thesis, Curriculum in Operations

Ph.D. Thesis, School of Industrial and

Ph.D. Thesis, School of Industrial and


Technical Report No. 37, Department of Operations Research, Stanford University, Palo Alto, California.

Alexopoulos and Seila


AUTHOR BIOGRAPHIES

CHRISTOS ALEXOPOULOS is an Associate Professor in the School of Industrial and Systems Engineering at the Georgia Institute of Technology. He received his Ph.D. in Operations Research from the University of North Carolina at Chapel Hill. His research interests are in the areas of applied probability, statistics, and optimization of stochastic systems. His recent work involves problems related to the optimal design of telecommunications and transportation systems. Dr. Alexopoulos is a member of INFORMS and the INFORMS College of Simulation. He served as a Co-Edition for the Proceedings of the 1995 Winter Simulation Conference.

ANDREW SEILA is an Associate Professor in the Terry College of Business at the University of Georgia, Athens, Georgia. He received his B.S. in Physics and Ph.D. in Operations Research and Systems Analysis, both from the University of North Carolina at Chapel Hill. Prior to joining the faculty of the University of Georgia, he was a Member of Technical Staff at the Bell Laboratories in Holmdel, New Jersey. His research interests include all areas of simulation modeling and analysis, especially output analysis. Dr. Seila is a member of INFORMS and INFORMS College of Simulation. He has been actively involved in the Winter Simulation Conference since 1977, and served as Program Chair for the 1994 conference.