
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

ROBUST DESIGN:
SEEKING THE BEST OF ALL POSSIBLE WORLDS

Susan M. Sanchez

Operations Research Department
Systems Management Department

Naval Postgraduate School
Monterey, CA 92943, U.S.A.

ut

a
b

a-
io
s
ta
l

or
h
ly
d

l
o

em
nc
r

to
’

re
ll
a
ns
e
s
m

n-
n

s
i-
ns,
ss
t

p-
lo
he
ig-
ch
nd
nd
nal
rly
s.
d
t
m,
rve
to-
is
the

em
e
n-

l.
e
as
as
ly
s-
nd
ide

.
f

ABSTRACT

We describe a framework for analyzing simulation outp
in order to find solutions that will work well after imple-
mentation. We show how the use of a loss function th
incorporates both system mean and system variability can
used to efficiently and effectively carry out system optimiz
tion and improvement efforts. For models whose behav
depends on quantitative factors, we illustrate how robu
design can be accomplished by using simple experimen
designs in conjunction with response-surface metamode
The results can yield new insights into system behavi
and may lead to recommended system configurations t
differ substantially from those selected by analysis sole
on the basis of mean response. We assume a knowle
base at the level of Chapter 12 ofSimulation Modeling and
Analysis(Law and Kelton 2000) but will review essentia
elements and distribute illustrative examples at the sessi

1 INTRODUCTION

What is robust design? It is a system optimization and im
provement process that springs from the view that a syst
should not be evaluated on the basis of mean performa
alone. In addition to exhibiting an acceptable mean perfo
mance, a “good” system must be relatively insensitive
uncontrollable sources of variation present in the system
environment.

Some notation and terminology will be necessary befo
the robust design process and its benefits can be fu
discussed. However, it is important to state up front th
the purpose of robust design is to lead to better decisio
better in terms of implementation, better in terms of th
level and consistency of performance, better in terms of co
and better in terms of insights into the drivers of syste
performance.

The robust design approach originated in quality pla
ning and engineering product design activities (Taguchi a
69
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Wu 1980; Taguchi 1986 1987). Taguchi found that it wa
often more costly to control causes of manufacturing var
ation than to make a process insensitive to these variatio
and through the use of simple experimental designs and lo
functions it was often possible to greatly improve produc
performance by “building in” the quality. Taguchi’s philos-
ophy and strategy have been widely praised in both the a
plied statistics and manufacturing communities, (Pignatiel
and Ramberg 1991) but many of the methods and tactics
advocates are often controversial (Box 1988, Ramberg, P
natiello and Sanchez 1991, Nair et al. 1992). The approa
described in this paper (see also Sanchez et al. 1996 a
1998, Ramberg et al. 1991) combines Taguchi’s strategy a
response-surface metamodeling techniques. The additio
insights that can be gained make this approach particula
beneficial when analyzing simulations of complex system

In the simulation context, robust design can be viewe
from two slightly different perspectives. One view is tha
simulation is used primarily as a surrogate for a real syste
because of the cost and time required to make and obse
changes in a real system. From this perspective, the
tal time required to perform a robust design experiment
greatly reduced, but the designs and analyses used are
same as those that would be applied to a physical syst
if cost and time permitted. Applications have included th
product designers’ uses of computer models for experime
tation in place of physical prototypes, particularly in the
semiconductor industry (Sacks et al. 1989, Welch et a
1990). These experiments have typically involved Mont
Carlo simulation, although clearly robustness can be used
a criteria for evaluating discrete-event simulation systems
well. Those who use simulation to study systems primari
because of the difficulty of experimenting on the real sy
tem may realize the benefits of improved performance a
decreased cost cited by many manufacturers if they dec
to evaluate performance in terms of robustness.

A larger view of the simulation process is also possible
A simulation model is constructed assuming a variety o
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system inputs (e.g., distributional forms and characteristi
simplifying assumptions, level of detail) which are unlikel
to be completely accurate. Model verification and validatio
are important issues in the field, as is simulation sensitiv
analysis. From this perspective, one can view robust des
as a process of simulation optimization, where the “bes
answer is not overly sensitive to small changes in the syst
inputs. If robust systems are identified, then the actual resu
are more likely to conform to the anticipated results aft
implementation.

The robustness criteria can be applied to rank a discr
number of alternatives, which result from changing the se
tings of some or all of the inputs to the simulation mode
(or system). Alternatively, if some or all of the input factor
are quantitative, one can construct metamodels of the sim
lation which describe how the system performance varies
a function of the input factors. There are many approach
to metamodeling, but response surface metamodels w
well in the robust design context. Metamodels provid
much more information about the underlying system tha
haphazard investigation of a few alternatives. Thus, if t
goal of the analyst is to optimize or improve the model
performance, and flexibility exists in the settings of the d
cision factor levels (as in prospective studies), then buildi
a metamodel is appropriate. The actual number of confi
urations studied, and the form (linear, quadratic, etc.)
the resulting metamodel are dependent on the experime
design chosen. Note that first-order models may not suffi
for complex discrete-event simulations: performance is o
ten highly nonlinear, even over a relatively restricted ran
of factor settings.

The construction of metamodels is facilitated by th
use of experimental design techniques. Simulation analy
have the luxury of controlling all inputs to the simulation
(including random number seeds, etc.): this means th
have more flexibility in designing the experiment, and mo
opportunities for exploiting the additional degree of contro
than do those experimenting directly on real systems.

In this tutorial our focus is on the robust design proce
for discrete-event simulation experiments. We begin wi
a discussion of the terminology used in the robust desi
approach. We then discuss tactical issues, such as appro
ate experimental designs, metamodel construction, rob
design identification, analysis, We conclude with a summa
of the benefits of a robust design approach, emphasizing
types insights into system behavior that can be achieve

2 NOTATION AND TERMINOLOGY

In this section, we present notation and discuss the term
nology related to the robust design process.
ng
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2.1 Factor Classification

In systems where stochastic variation is present, the respo
exhibits random fluctuation or variation. In order to achiev
systems or products for which the variation around the targ
value is low, several steps are necessary. First, one m
identify factors in the system which are anticipated to affe
the system response. Factors are classified asdecision
factors, noise factors, or artificial factors.

The decision factors are those which are controllab
in the real world setting modeled by the simulation. Nois
factors are not easily controllable or controllable only a
great expense in the real-world setting. Noise factors inclu
sources of variation within the real-world system (i.e., withi
a manufacturing plant) as well as exogenous factors (su
as customer and supplier characteristics). Finally, artifici
factors are those simulation-specific variables such as
initial state of the system, the warm-up period (truncatio
point), termination conditions (run duration), and random
number stream(s) (seed, antithetic switch).

The distinction between decision factors and noise fa
tors is often recognized in simulation experiments, but rare
used to develop the experimental design or affect the an
ysis of the simulation results. However, as we discuss
Section 3.1, the classification is important. It is necessa
for determining system robustness, and also presents
opportunity for reducing the number of runs required b
concentrating sampling efforts on assessing decision fac
effects. This additional layer of control made possible b
the artificial factors can also be exploited in the experiment
design (Schruben et al. 1992). This is not new—it is th
basis of many variance reallocation techniques.

2.2 Performance Evaluation

The analyst begins by specifying some performance ch
acteristic of special interest, and an associated target va
τ . Common measures are related to system throughp
or system states, such as the waiting time or number
customers in queueing systems, although cost could a
be used as a performance measure. In general, the pat
of the performance characteristic’s fluctuation around th
target value will differ across these configurations. The co
of this fluctuation must be measured in order to optimiz
or improve the system. Since end-users will incur costs
system performance deviates from the target, the evaluat
criterion is often philosophically referred to as theloss to
society, or the long term business loss.

An ideal configuration would result in the performanc
characteristic’s mean equal toτ and its variance equal to
zero. Thus, a numerical method for trading off performanc
mean and variability is needed.

We utilize a quadratic loss function, which (in many
cases) is a reasonable surrogate for the ‘true’ underlyi
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loss function which may be difficult or impossible to spec
ify exactly. Let x and Y (x) denote a vector of decision
factor settings and the associated performance character
respectively, and let� denote the noise factor space. Then
assuming that no loss is incurred whenY (x) achieves the
ideal state (τ ), the quadratic loss function can be writte
as:

` (Y (x)) = c [Y (x)− τ ]2 (1)

where the scaling constantc can be used to convert losse
into monetary units to facilitate comparisons of system
with different capital costs. It follows from equation (1
that the expected loss associated with configurationx is

E(loss) = c
[
σ 2+ (µ− τ)2

]
. (2)

This loss function has several nice properties. It p
nalizes small deviations fromτ only slightly, yet assesses a
large penalty for responses far from the target. The expec
loss is similar to a mean-squared-error loss, thus it has ma
desirable mathematical properties as well. However, oth
loss functions can be used if the true loss function is n
approximated well by a quadratic.

While conceptually straightforward, the use of a los
function to incorporate system variability into the perfor
mance evaluation represented a major shift in perspect
within the manufacturing community. No longer was it ac
ceptable to think about optimizing mean performance wit
out regard to performance variability: a “good” product wa
also robust. The quantification of robustness, instead of
0/1 loss function often implicitly used to represent produc
which were within/outside specification limits, also provide
impetus to management and manufacturing to continua
improve product quality. We believe that for many types o
applications, a similar change in perspective should occ
within the discrete-event simulation community. If simula
tion is being used to identify “good” systems (e.g., plan
layouts, scheduling and control mechanisms), where va
ability is not constant across alternative system designs, th
a loss function such as that in equation (2) is a better desc
tor of the system’s desirability than the average (steady-sta
performance. For example, a single-server queue will ha
the same mean waiting time for customers/jobs under t
FIFO and LIFO queue disciplines, but the variability is quit
different. In general, the configuration with the best mea
need not be associated with the lowest loss.

3 EXPERIMENTAL DESIGNS

Choosing an experimental design means specifying the l
els of all decision factors, noise factors, and artificial facto
for each run of the simulation. An appropriate total samp
size must also be determined. In order to evaluate the
71
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pected response variability across the noise space, a cros
decision×noise factor plan can be used. This means th
the same experimental plan for the noise factors is used
each run of the decision factor plan.

3.1 Basic Plans

Complete and fractional factorials are often used. Amon
these, two-level designs are popular choices because
their simplicity and efficiency. They permit the evaluation
of the linear decision factor effects, as well as interactio
or synergistic effects.

For a two-level factorial or fractional factorial experi-
ment involvingk decision factors, the factor levels should
be chosen to cover the range of interest. For noise fact
plans, the levels should be chosen so that the mean a
variance of the two-point sampling distribution are equa
to the mean and variance of the underlying distribution. I
the case of two-level sampling of continuous factors (o
discrete factors whose distributions can be closely approx
mated by continuous distributions), this corresponds to on
standard deviation below and one standard deviation abo
the mean. In the case of equally likely Bernoulli outcomes
this corresponds to the two factor levels. For discrete di
tributions whereµ ± σ does not yield valid factor levels,
the outcomes can be sampled (approximately) proportion
to their probability of occurrence. If the factor is a mean
estimated from data, then the upper and lower bounds o
95% confidence interval ean be used (Wild and Pignatiel
1991).

Other orthogonal designs have been advocated for r
sponse surface metamodeling. For example, one mig
want to minimize the bias or mean-squared error of th
regression coefficients (Donahue, Houck and Myers 1992
Central composite designs are good for fitting second-ord
metamodels. These designs are discussed for simulat
experiments by Tew (1992) or Hood and Welch (1993
experimental design texts such as Box and Draper (198
Box, Hunter, and Hunter (1988) or Montgomery (1991
contain details and alternative designs. Two-level plans a
not sufficient if quadratic effects are anticipated.

3.2 Artificial Factor Plans

A well established field in simulation is that of variance
reallocation (or variance reduction), where researchers ha
established methods of reducing the variance of theesti-
matorsof mean responses in order to increase power f
hypothesis testing purposes. Unequal response variance
different system configurations is recognized as pervasiv
It often influences the experiment design and analysis (e.
varying run lengths for different system alternatives), bu
has rarely been incorporated into the system evaluatio
In the robust design context, variance reallocation schem
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hold promise for further increasing the efficiency of ex
perimentation. Rather than using all independent rand
number streams, one can use a common/antithetic samp
strategy (Schruben and Margolin 1978, Tew and Wils
1991, 1994). This reallocates variance among the coe
cient estimates. The implications for robust design are t
the artificial factor plan should be chosen in order to indu
correlations which reallocate variance from the interesti
terms (decision factors) to the uninteresting terms (no
factors) (Schruben et al. 1992). The artificial factor plan
typically embedded in the noise factor plan, e.g., through
choice of random number streams used during a simulat
run.

3.3 Frequency Domain Plans

If the number of noise factors is large, even a satura
factorial plan for the noise factors may result in an unwield
experimental design after crossing it with the decision fac
plan. One way to cut down the size of the experiment
to first screen the noise factors and then employ a hig
fractionated factorial design. Another efficient way to colle
the data is to oscillate each noise factor sinusoidally within
simulation run at unique, carefully selected frequency. Th
allows examination of the system across a range of no
factor combinations without a prohibitively large number o
runs (Moeeni et al. 1997). Such oscillation forms the ba
of frequency domain experimentation in the simulation fie
(Schruben and Cogliano, 1987; Sanchez and Buss, 19
although the analysis differs. Indexing by time, rather th
by entity, is recommended (Mitra and Park, 1991).

For variance attribution, the analyst is interested
determining what portions of the total system variability ca
be attributed to the noise factors, and a frequency dom
approach could be used for factor screening purposes.
robust design, we are interested in what the performan
variability is at a particular decision factor configuration
the fact that noise factors are varying across the no
space is important, while estimates of their specific effe
are not. In both cases, care should be taken to se
driving frequencies which will not result in confounding
and to choose frequencies resulting in cycles sufficien
long to affect the system response (Jacobson, Buss
Schruben 1991). Discrete factors can be handled either
oscillating their probabilities of realizing particular levels
or by discretizing the sinusoidal function (Sanchez a
Sanchez, 1991).

3.4 Correlated Factor Plans

If the noise factors are correlated in the real world system
might be that a factorial or fractional factorial design cou
not be conducted over the entire range of interest. F
example, a queueing system might be unstable if all no
72
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factors were held at their high levels. If this situation wa
unlikely to occur in practice because of correlation amon
the variables, then a sampling scheme which made u
of the underlying dependence structure would seem mo
appropriate. If the noise factors are normally distributed, th
analyst can sample at axial points on the elliptical contou
of the joint distributions (Sanchez 1994b, Sanchez, Smi
and Lawrence 1996, 2000).

3.5 Combined Array Plans

In some circumstances, a crossed decision×noise factor
plan may not be the most efficient in terms of the tota
number of observations (runs) required. An alternative
a combined plan, where a single design matrix (such as
factorial) is used with columns divided among decision an
noise factors. As Myers, Khuri and Vining (1992) sugges
this can be used if one can specifya priori which of the
many possible interaction terms are potentially importan
It may mean that the experiment can be conducted using
smaller total number of simulation runs than a crossed pla
would require.

4 RESPONSE SURFACE METAMODELS

The responseY is a random function of the decision fac-
tors {Xi}, the noise factors{Wj }, the artificial factors{Ak},
and the inherent variability of the system. The form o
the metamodels fit to the simulation outputs, and the met
model uses, differ between the robust design and varian
attribution stages.

4.1 Metamodels for Robust Design

For this analysis, we seek to characterize the system b
havior as a function of the decision factors alone. Fo
every combination of decision factor configurationi and
noise factor configurationj , we first compute (after suitable
truncation to remove initialization bias) the sample averag
Y ij and sample variances2

ij for the run. Then we compute
summary measures across the noise space for each deci
factor configurationi:

Y i· = 1

nw

n∑
j=1

Y ij ,

V i· = 1

nw − 1

nw∑
j=1

(
Y ij − Y i·

)2+ 1

nw

n∑
j=1

s2
ij

wherenw is the number of points in the noise factor plan
Regression is used to fit two initial metamodels: one for th
performance mean, and one for the performance variabili
(Sanchez et al. 1993, 1998; see also Vining and Myer
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1990). The terms in the initial metamodels depend on t
experimental design used. For discrete-event simulat
experiments we recommend a design which allows for fittin
at least a quadratic effect. We obtain models such as

µ ≈ β̂0 + β̂1X1+ . . .+ β̂kXk + β̂1,2X1X2 (3)

+ . . .+ β̂k−1,kXk−1Xk + quadratic

log(σ 2) ≈ γ̂0 + γ̂1X1+ . . .+ γ̂kXk (4)

+γ̂1,2X1X2+ . . .+ γ̂k−1,kXk−1Xk

+ quadratic

The logarithmic transformation is used for stability purpose
If the quadratic is an important term in either metamode
further experimentation is needed to determine the decis
factor(s) from which it arises.

4.2 Metamodels for Variance Attribution

Metamodel construction is slightly Different for variance
attribution purposes since all factors are treated as no
factors and we assume that the factor ranges are sufficie
small that a linear metamodels suffice. If we fit models
the response mean and standard deviation, then we ob

µ ≈ β̂0 + β̂1W1+ . . . β̂kWk,

s ≈ γ̂0 +
w∑
j=1

γ̂jWj

where the{βj } and {γj } are the least-squares regressio
coefficients. By treating these coefficients as fixed, t
overall variance can be approximated by

σ 2 ≈ γ̂ 2
0 +

w∑
j=1

(β̂2
j + γ̂ 2

j )Var(Wj ). (5)

5 ANALYZING THE RESULTS

The initial metamodels constructed for either robust desi
or variance attribution should be assessed and may need t
refined. The experimental plans are typically unreplicat
because of the cost of experimentation. This means that
analyst may have only a single degree of freedom for error
the initial regression metamodels, so heavy reliance sho
not be placed on the rawp-values ort-values. An option
offered by many statistical packages (or which can be do
manually) is a normal probability plot, which can be used
graphically assess whether or not any effects larger than
noise thresh-hold of the the experiment. Normal probabili
plots work well when 15 or more factor or interaction effect
are estimated. If the regression metamodels can be simpli
73
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by eliminating unimportant terms, then pooling increas
the degrees of freedom for the error estimate and allo
formal tests of the statistical significance of the remainin
metamodel coefficients.

5.1 Robust Design Analysis

The information resulting from the robust design metamo
els of equations (3) and (4) can easily be combined using
quadratic loss function (equation (2)) to identify robust co
figurations. The metamodels themselves provide detai
information regarding the system performance: they ind
cate which decision factors affect the mean, which affect t
variance, and which influence both aspects of performan

For many simulation models, the presence of intera
tion terms and the relationship between the mean and
variability of the performance characteristic make it difficu
to achieve the target value with the most robust produ
design. In these cases, contour plots may be useful
selecting candidate product designs. For example, one
first use the mean metamodel to identify several config
rations for which the average performance characteristic
on target, and then use the the metamodel of log(σ 2) to
select a configuration which is fairly robust.

Often the results suggest configurations that were n
among those initially tested. In such cases, further expe
mentation is beneficial in order to confirm the performan
characteristic’s behavior before committing to a particul
configuration. However, the secondary experiment may
much smaller than the initial experiment if several of th
decision factors do not appear in the revised metamod
they can be set at their most economical levels and scree
from further experimentation.

We emphasize that the decision in the robust des
framework can be very different than that made on the ba
of mean performance alone. Even for queueing system
where performance mean and variability tend to have hi
positive correlation, complex interactions among decisi
factors may affect that relationship. One example (Sanch
Ramberg and Sanchez 1998) that will be illustrated in det
during the presentation concerns a job-shop simulation. T
job-shop has three products, five machine groups, and va
ing processing time distributions, product mix percentag
etc. Experimentation showed that two configurations cou
have the same mean response to two decimal places,
variances which differed by over a factor of two. The config
urations corresponding to the best means were dramatic
inferior to the low loss designs: one job shop configuratio
which was among the best in terms of mean performan
had a 36% higher loss then the low-loss configuration, y
it used more machines.

The robust design philosophy and joint metamodelin
approach have a synergistic relationship: they typica
provide the analyst with more information than would resu
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from either a loss comparison of only the configuratio
tested, or from a single metamodel which directly measu
system loss or cost. In the latter case, if a metamodel sho
that expected loss decreases as factorX increases, the root
cause remains unknown. Perhaps the response mea
closer to the target. Perhaps the response variance is sm
It could be that both the mean and variance improve,
that an improvement in one aspect is partially offset by
degradation in the other. However, separate construction
metamodels for the system mean and variability facilita
the identification of new designs which may be even bet
than those considered in the experimental framework.

5.2 Variance Attribution Analysis

Several types of questions can be addressed. First,
can assess the overall mean and variability for a particu
configuration, e.g., that chosen at the end of the robust des
stage. If the decision factors can be perfectly controlled
their chosen settings, then the overall mean and varia
can just be estimated by the robust design metamod
However, if variation in the decision factors’ settings aroun
their nominal values is anticipated, an additional experime
will provide a better picture of the system’s capabilities.

Other questions concern the relative effects of the no
factors. The term(β̂2

j + γ̂ 2
j )Var(Wj ) in equation (5) is

called thetransmitted variancefor noise factorWj . This
indicates the amount of variability in the noise factor which
passed along to variance in the response. Depending on
magnitudes ofβ̂j and γ̂j , variation inWj can be amplified
or dampened by the system. The termγ̂ 2

0 in equation (5)
is called theinherent variance: it is the smallest variance
achievable if all noise factors investigated in the experime
have variances driven to zero. (For Monte Carlo simulatio
all randomness has been removed during experimenta
and everyγ̂i can be replaced by zero.)

Once transmitted variances have been computed for
noise factors, the relative importance of these sources
variation on the output is apparent. This information ca
be used to evaluate proposed changes to the system.
example, is it cost-effective to pay more for raw mater
als, machine maintenance, or training in order to impro
the consistency of these factors? Alternatively, is it pos
ble to relax controls slightly and allow more variation i
the inputs without adversely affecting the system beha
ior? If the standard deviation of a noise factorWj can
be reduced by a factor ofaj without affecting the mean
performance, then its transmitted variance is reduced b
factor of a2

j and the overall system variability is reduce

by the amount(1− a2
j )Var(Wj ). The conversion constan

c from equation (2) can be used to express the overall p
formance change in dollars. A comparison with the cost
implementing the proposed change then shows whethe
not such implementation would further improve the syste
74
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performance. If changes in the noise factor variance a
affect the system mean, then both the mean and varia
components should be included in the cost assessment
equation (2).

Variance attribution can also aid in simulation modelin
and validation. If the distributional characteristics used
generate random components of the simulation model
themselves estimates, and if the system is highly sensitive
those characteristics, then the simulation may not mimic t
true system behavior adequately. Once again, the ana
can use variance attribution to obtain feedback regard
the modeling process. This allows model refinement effo
to be expended in accordance to factor sensitivity.

6 BENEFITS

The benefits of using a robust design approach can be s
stantial. Many of these apply regardless of the type of mo
(simulation, analytic, prototype) on which experiments a
performed. First, because the chosen system configura
is robust, it is likely to work well across a variety of real
izations of noise factor values. This means that there
likely to be fewer unpleasant surprises when the decis
is implemented. A second benefit is improved communic
tion between the analyst and client via expected loss. T
also makes it possible to evaluate trade-offs between
costs of reducing noise and the benefits of improving p
formance quality. There are times when the insights gain
from the robust design process will allow decision-make
to simultaneously improve performance and decrease co
Finally, the fact that expected loss is calculated facilitat
continuous improvement: even if target value is achiev
on average, one can always seek to identify factors t
can further reduce the variability of the response. In th
manner, factors that were initially classified as noise facto
may become decision factors at a later date.

There are some benefits of particular interest to si
ulators as well. First, the view that variability is a criti
cal component of performance—not solely a nuisance
be overcome by taking larger samples—may improve t
modeling and analysis process, and lend more credibi
to the simulation results. Second, this structured approa
lends itself to rapid model evaluation and scenario analys
It is much more efficient than trial-and-error at identifyin
“good” decisions. Third, the variance attribution proce
gives the simulation analyst the ability to test whether
not the model performance is highly sensitive to input di
tributions and their parameters. This can reduce the ti
required to arrive at a functioning simulation model th
captures the essential elements of the real-world proce
If certain input parameters have little impact on the pe
formance, then it is not necessary to spend a great dea
time or resources collecting data to build accurate empiri
distributions. If, however, performance is found to var
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greatly for small changes in distribution parameters, this
critical to identify in order to insure that good decisions ar
made. Finally, one may be able to assessa priori whether
or not it would be valuable to add more complexity t
component models. This will focus the modelers’ effor
on refining the simulation in ways that add value, rath
than simply adding to the run-time requirements.

7 CONCLUDING REMARKS

The approach outlined in this paper integrates the conce
of robust design with response surface metamodeling a
system optimization efforts for discrete-event simulatio
The simulation arena is amenable to analysis using rob
design strategies since all factors are controllable by t
analyst. The efficiency gained by designed experimentat
is particularly beneficial for complex simulation models
since each realization of system performance correspo
to the results of a (potentially lengthy) run.

In summary, robust design can be a highly useful a
proach for analyzing models of complex systems for seve
reasons.

• It is flexible. Robust design can be applied to
terminating or non-terminating simulation mod
els analytic models, statistical models, or physic
prototypes.

• It is efficient. Robust design can indicate when
model components have sufficient detail. Samplin
plans can incorporate simulation-specific artificia
factors, and be chosen to keep either the da
requirements or the analysts’ time and effort low

• Solutions are realistic by design. The suggested
system configurations have already shown that th
will behave well over a broad range of advers
conditions.

• It facilitates continuous improvement. Robust de-
sign clearly indicates important determinants o
performance variation, and guides efforts for sy
tem ‘optimization’ and improvement by conveying
hidden costs to the decision-makers.
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