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ABSTRACT

We describe a framework for analyzing simulation output
in order to find solutions that will work well after imple-
mentation. We show how the use of a loss function that

Wu 1980; Taguchi 1986 1987). Taguchi found that it was
often more costly to control causes of manufacturing vari-
ation than to make a process insensitive to these variations,
and through the use of simple experimental designs and loss
functions it was often possible to greatly improve product

incorporates both system mean and system variability can be performance by “building in” the quality. Taguchi’s philos-

used to efficiently and effectively carry out system optimiza-

ophy and strategy have been widely praised in both the ap-

tion and improvement efforts. For models whose behavior plied statistics and manufacturing communities, (Pignatiello
depends on quantitative factors, we illustrate how robust and Ramberg 1991) but many of the methods and tactics he
design can be accomplished by using simple experimental advocates are often controversial (Box 1988, Ramberg, Pig-
designs in conjunction with response-surface metamodels. natiello and Sanchez 1991, Nair et al. 1992). The approach
The results can yield new insights into system behavior, described in this paper (see also Sanchez et al. 1996 and
and may lead to recommended system configurations that 1998, Ramberg etal. 1991) combines Taguchi’s strategy and
differ substantially from those selected by analysis solely response-surface metamodeling techniques. The additional
on the basis of mean response. We assume a knowledgeinsights that can be gained make this approach particularly
base at the level of Chapter 12 8imulation Modeling and beneficial when analyzing simulations of complex systems.
Analysis(Law and Kelton 2000) but will review essential In the simulation context, robust design can be viewed
elements and distribute illustrative examples at the session. from two slightly different perspectives. One view is that
simulation is used primarily as a surrogate for a real system,
because of the cost and time required to make and observe
changes in a real system. From this perspective, the to-
What is robust design? It is a system optimization and im- tal time required to perform a robust design experiment is
provement process that springs from the view that a system greatly reduced, but the designs and analyses used are the
should not be evaluated on the basis of mean performance same as those that would be applied to a physical system

1 INTRODUCTION

alone. In addition to exhibiting an acceptable mean perfor-
mance, a “good” system must be relatively insensitive to
uncontrollable sources of variation present in the system'’s
environment.

Some notation and terminology will be necessary before
the robust design process and its benefits can be fully
discussed. However, it is important to state up front that

the purpose of robust design is to lead to better decisions:

better in terms of implementation, better in terms of the
level and consistency of performance, better in terms of cost,
and better in terms of insights into the drivers of system
performance.

The robust design approach originated in quality plan-

if cost and time permitted. Applications have included the
product designers’ uses of computer models for experimen-
tation in place of physical prototypes, particularly in the
semiconductor industry (Sacks et al. 1989, Welch et al.
1990). These experiments have typically involved Monte
Carlo simulation, although clearly robustness can be used as
a criteria for evaluating discrete-event simulation systems as
well. Those who use simulation to study systems primarily
because of the difficulty of experimenting on the real sys-
tem may realize the benefits of improved performance and
decreased cost cited by many manufacturers if they decide
to evaluate performance in terms of robustness.

A larger view of the simulation process is also possible.

ning and engineering product design activities (Taguchi and A simulation model is constructed assuming a variety of
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system inputs (e.g., distributional forms and characteristics, 2.1 Factor Classification
simplifying assumptions, level of detail) which are unlikely
to be completely accurate. Model verification and validation In systems where stochastic variation is present, the response
are important issues in the field, as is simulation sensitivity exhibits random fluctuation or variation. In order to achieve
analysis. From this perspective, one can view robust design systems or products for which the variation around the target
as a process of simulation optimization, where the “best” value is low, several steps are necessary. First, one must
answer is not overly sensitive to small changes in the system identify factors in the system which are anticipated to affect
inputs. Ifrobust systems are identified, then the actual results the system response. Factors are classifiedlexssion
are more likely to conform to the anticipated results after factors noise factorsor artificial factors
implementation. The decision factors are those which are controllable
The robustness criteria can be applied to rank a discrete in the real world setting modeled by the simulation. Noise
number of alternatives, which result from changing the set- factors are not easily controllable or controllable only at
tings of some or all of the inputs to the simulation model great expense inthe real-world setting. Noise factorsinclude
(or system). Alternatively, if some or all of the input factors  sources of variation within the real-world system (i.e., within
are gquantitative, one can construct metamodels of the simu- a manufacturing plant) as well as exogenous factors (such
lation which describe how the system performance varies as as customer and supplier characteristics). Finally, artificial
a function of the input factors. There are many approaches factors are those simulation-specific variables such as the
to metamodeling, but response surface metamodels work initial state of the system, the warm-up period (truncation
well in the robust design context. Metamodels provide point), termination conditions (run duration), and random
much more information about the underlying system than number stream(s) (seed, antithetic switch).
haphazard investigation of a few alternatives. Thus, if the The distinction between decision factors and noise fac-
goal of the analyst is to optimize or improve the model’'s torsis often recognized in simulation experiments, but rarely
performance, and flexibility exists in the settings of the de- used to develop the experimental design or affect the anal-
cision factor levels (as in prospective studies), then building ysis of the simulation results. However, as we discuss in
a metamodel is appropriate. The actual number of config- Section 3.1, the classification is important. It is necessary
urations studied, and the form (linear, quadratic, etc.) of for determining system robustness, and also presents an
the resulting metamodel are dependent on the experimental opportunity for reducing the number of runs required by
design chosen. Note that first-order models may not suffice concentrating sampling efforts on assessing decision factor
for complex discrete-event simulations: performance is of- effects. This additional layer of control made possible by
ten highly nonlinear, even over a relatively restricted range the artificial factors can also be exploited in the experimental
of factor settings. design (Schruben et al. 1992). This is not new—it is the
The construction of metamodels is facilitated by the basis of many variance reallocation techniques.
use of experimental design techniques. Simulation analysts
have the luxury of controlling all inputs to the simulation 2.2 Performance Evaluation
(including random number seeds, etc.): this means they
have more flexibility in designing the experiment, and more The analyst begins by specifying some performance char-
opportunities for exploiting the additional degree of control, acteristic of special interest, and an associated target value
than do those experimenting directly on real systems. 7. Common measures are related to system throughput
In this tutorial our focus is on the robust design process or system states, such as the waiting time or number of
for discrete-event simulation experiments. We begin with customers in queueing systems, although cost could also
a discussion of the terminology used in the robust design be used as a performance measure. In general, the pattern
approach. We then discuss tactical issues, such as appropri-of the performance characteristic’s fluctuation around the
ate experimental designs, metamodel construction, robust target value will differ across these configurations. The cost
design identification, analysis, We conclude with a summary of this fluctuation must be measured in order to optimize
of the benefits of a robust design approach, emphasizing the or improve the system. Since end-users will incur costs if
types insights into system behavior that can be achieved. system performance deviates from the target, the evaluation
criterion is often philosophically referred to as thss to
2 NOTATION AND TERMINOLOGY society or thelong term business loss
An ideal configuration would result in the performance
In this section, we present notation and discuss the termi- characteristic’s mean equal toand its variance equal to
nology related to the robust design process. zero. Thus, a numerical method for trading off performance
mean and variability is needed.
We utilize a quadratic loss function, which (in many
cases) is a reasonable surrogate for the ‘true’ underlying
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loss function which may be difficult or impossible to spec- pected response variability across the noise space, a crossed
ify exactly. Letx and Y (x) denote a vector of decision  decisiorknoise factor plan can be used. This means that
factor settings and the associated performance characteristicthe same experimental plan for the noise factors is used for
respectively, and le2 denote the noise factor space. Then, each run of the decision factor plan.

assuming that no loss is incurred whgix) achieves the

ideal state €), the quadratic loss function can be written 3.1 Basic Plans

as:

Complete and fractional factorials are often used. Among
these, two-level designs are popular choices because of
their simplicity and efficiency. They permit the evaluation
of the linear decision factor effects, as well as interaction
or synergistic effects.

For a two-level factorial or fractional factorial experi-
ment involvingk decision factors, the factor levels should
be chosen to cover the range of interest. For noise factor
plans, the levels should be chosen so that the mean and
] . ) . variance of the two-point sampling distribution are equal

This loss function has several nice properties. It pe- g the mean and variance of the underlying distribution. In
nalizes small deviations from only slightly, yet assesses a  he case of two-level sampling of continuous factors (or
large penalty for responses far from the target. The expected gjiscrete factors whose distributions can be closely approxi-
loss is similar to a mean-squared-error loss, thus it has many mated by continuous distributions), this corresponds to one
desirable mathematical properties as well. However, other siandard deviation below and one standard deviation above
loss functions can be used if the true loss function is Not {he mean. In the case of equally likely Bernoulli outcomes,
approximated well by a quadratic. this corresponds to the two factor levels. For discrete dis-

While conceptually straightforward, the use of a 10ss  yihyutions whereu + o does not yield valid factor levels,
function to incorporate system variability into the perfor-  he outcomes can be sampled (approximately) proportional
mance evaluation represented a major shift in perspective t thejr probability of occurrence. If the factor is a mean
within the manufacturing community. No longer was it ac-  astimated from data, then the upper and lower bounds of a
ceptable to think about optimizing mean performance with- 9504 confidence interval ean be used (Wild and Pignatiello
out regard to performance variability: a “good” product was 1991).
also robust. The quantification of robustness, instead of the Other orthogonal designs have been advocated for re-
0/1 loss function often implicitly used to represent products sponse surface metamodeling. For example, one might
which were within/outside specification limits, also provided \ant to minimize the bias or mean-squared error of the
impetus to management and manufacturing to continually regression coefficients (Donahue, Houck and Myers 1992).
improve product quality. We believe that for many types of  central composite designs are good for fitting second-order
applications, a similar change in perspective should occur metamodels. These designs are discussed for simulation
within the discrete-event simulation community. If simula- experiments by Tew (1992) or Hood and Welch (1993);
tion is being used to identify “good” systems (e.g., plant experimental design texts such as Box and Draper (1987),
layouts, scheduling and control mechanisms), where vari- goyx Hunter, and Hunter (1988) or Montgomery (1991)
ability is not constant across alternative system designs, then ontain details and alternative designs. Two-level plans are

aloss function such as that in equation (2) is a better descrip- ot sufficient if quadratic effects are anticipated.
tor of the system’s desirability than the average (steady-state)

performance. For example, a single-server queue will have 3 5 Artificial Factor Plans

the same mean waiting time for customers/jobs under the

FIFO and LIFO queue disciplines, but the variability is quite A well established field in simulation is that of variance
different. In general, the configuration with the best mean regjiocation (or variance reduction), where researchers have

LY () =c[Y(x) —1]? (1)

where the scaling constantcan be used to convert losses
into monetary units to facilitate comparisons of systems
with different capital costs. It follows from equation (1)

that the expected loss associated with configuratids

E(loss) =c¢ [02 + (u — r)z] . (2)

need not be associated with the lowest loss. established methods of reducing the variance ofeht-
mators of mean responses in order to increase power for
3 EXPERIMENTAL DESIGNS hypothesis testing purposes. Unequal response variance at

. . . o different system configurations is recognized as pervasive.
Choosing an experimental design means specifying the lev- |; often influences the experiment design and analysis (e.g.,

els of all decision factors, noise factors, and artificial factors yarying run lengths for different system alternatives), but
for each run of the simulation. An appropriate total sample pag rarely been incorporated into the system evaluation.

size must also be determined. In order to evaluate the ex- | the robust design context, variance reallocation schemes
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hold promise for further increasing the efficiency of ex-
perimentation. Rather than using all independent random

factors were held at their high levels. If this situation was
unlikely to occur in practice because of correlation among

number streams, one can use a common/antithetic samplingthe variables, then a sampling scheme which made use

strategy (Schruben and Margolin 1978, Tew and Wilson

1991, 1994). This reallocates variance among the coeffi-
cient estimates. The implications for robust design are that
the artificial factor plan should be chosen in order to induce
correlations which reallocate variance from the interesting
terms (decision factors) to the uninteresting terms (noise
factors) (Schruben et al. 1992). The artificial factor plan is

typically embedded in the noise factor plan, e.g., through the
choice of random number streams used during a simulation
run.

3.3 Frequency Domain Plans

If the number of noise factors is large, even a saturated
factorial plan for the noise factors may result in an unwieldy
experimental design after crossing it with the decision factor
plan. One way to cut down the size of the experiment is
to first screen the noise factors and then employ a highly
fractionated factorial design. Another efficient way to collect
the data is to oscillate each noise factor sinusoidally within a
simulation run at unique, carefully selected frequency. This
allows examination of the system across a range of noise
factor combinations without a prohibitively large number of
runs (Moeeni et al. 1997). Such oscillation forms the basis
of frequency domain experimentation in the simulation field

(Schruben and Cogliano, 1987; Sanchez and Buss, 1987),

although the analysis differs. Indexing by time, rather than
by entity, is recommended (Mitra and Park, 1991).

For variance attribution, the analyst is interested in
determining what portions of the total system variability can
be attributed to the noise factors, and a frequency domain

of the underlying dependence structure would seem more
appropriate. If the noise factors are normally distributed, the
analyst can sample at axial points on the elliptical contours
of the joint distributions (Sanchez 1994b, Sanchez, Smith
and Lawrence 1996, 2000).

3.5 Combined Array Plans

In some circumstances, a crossed decigiooise factor
plan may not be the most efficient in terms of the total
number of observations (runs) required. An alternative is
a combined plan, where a single design matrix (such as a
factorial) is used with columns divided among decision and
noise factors. As Myers, Khuri and Vining (1992) suggest,
this can be used if one can specdypriori which of the
many possible interaction terms are potentially important.
It may mean that the experiment can be conducted using a
smaller total number of simulation runs than a crossed plan
would require.

4 RESPONSE SURFACE METAMODELS

The response is a random function of the decision fac-
tors {X;}, the noise factor§W,}, the artificial factorq A},

and the inherent variability of the system. The form of
the metamodels fit to the simulation outputs, and the meta-
model uses, differ between the robust design and variance
attribution stages.

4.1 Metamodels for Robust Design

approach could be used for factor screening purposes. ForFor this analysis, we seek to characterize the system be-

robust design, we are interested in what the performance
variability is at a particular decision factor configuration:

the fact that noise factors are varying across the noise
space is important, while estimates of their specific effects
are not. In both cases, care should be taken to select
driving frequencies which will not result in confounding

and to choose frequencies resulting in cycles sufficiently

long to affect the system response (Jacobson, Buss and

Schruben 1991). Discrete factors can be handled either by
oscillating their probabilities of realizing particular levels,
or by discretizing the sinusoidal function (Sanchez and
Sanchez, 1991).

3.4 Correlated Factor Plans

If the noise factors are correlated in the real world system, it
might be that a factorial or fractional factorial design could

not be conducted over the entire range of interest. For
example, a queueing system might be unstable if all noise
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havior as a function of the decision factors alone. For
every combination of decision factor configuratiorand

noise factor configuratiop, we first compute (after suitable
truncation to remove initialization bias) the sample average
Y,; and sample variancgzj for the run. Then we compute
summary measures across the noise space for each decision

factor configuration:

n
137,
j=1

Ny “—

Ny

_ — .2 1<
1Z(Y,'j—yi.) +E2;lezj
j:

j=1

1

Ny —

V..

wheren,, is the number of points in the noise factor plan.

Regression is used to fit two initial metamodels: one for the
performance mean, and one for the performance variability
(Sanchez et al. 1993, 1998; see also Vining and Myers,
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1990). The terms in the initial metamodels depend on the by eliminating unimportant terms, then pooling increases
experimental design used. For discrete-event simulation the degrees of freedom for the error estimate and allows
experiments we recommend a design which allows for fitting formal tests of the statistical significance of the remaining
at least a quadratic effect. We obtain models such as metamodel coefficients.

o~ /§0 + ,31X1 +...+ Bka + ,31,2X1X2 3) 5.1 Robust Design Analysis

T Ptk XiaXi - quadratic The information resulting from the robust design metamod-
els of equations (3) and (4) can easily be combined using the
guadratic loss function (equation (2)) to identify robust con-
figurations. The metamodels themselves provide detailed
information regarding the system performance: they indi-

logc?) =~ Jo+7X1+4...+ Xk 4)
+p12X1 X0+ o+ D1 Xi_1 Xk

+ quadratic cate which decision factors affect the mean, which affect the
variance, and which influence both aspects of performance.
The logarithmic transformation is used for stability purposes. For many simulation models, the presence of interac-

If the quadratic is an important term in either metamodel, tion terms and the relationship between the mean and the
further experimentation is needed to determine the decision variability of the performance characteristic make it difficult

factor(s) from which it arises. to achieve the target value with the most robust product
_ o design. In these cases, contour plots may be useful for
4.2 Metamodels for Variance Attribution selecting candidate product designs. For example, one can

o _ _ first use the mean metamodel to identify several configu-
Metamodel construction is slightly Different for variance rations for which the average performance characteristic is

attribution purposes since all factors are treated as noise on target, and then use the the metamodel ofddy to
factors and we assume that the factor ranges are sufficiently select a configuration which is fairly robust.

small that a linear metamodels suffice. If we fit models of Often the results suggest configurations that were not
the response mean and standard deviation, then we obtaingmong those initially tested. In such cases, further experi-

mentation is beneficial in order to confirm the performance

uw =~ Bo+piWi+...BcWk, characteristic’s behavior before committing to a particular
w configuration. However, the secondary experiment may be

s~ Yo+ ZJ?J' W; much smaller than the initial experiment if several of the
Jj=1 decision factors do not appear in the revised metamodels:

they can be set at their most economical levels and screened
from further experimentation.

We emphasize that the decision in the robust design
framework can be very different than that made on the basis
w of mean performance alone. Even for queueing systems,

o2~ Aoz + 2(32 + ;?Z)Var(Wj). (5) Whgrg performapce mean anq varlab!llty tend to have'h'lgh

Pt R positive correlation, complex interactions among decision
factors may affect that relationship. One example (Sanchez,

5 ANALYZING THE RESULTS Ramberg and Sanchez 1998) that will be illustrated in detail
during the presentation concerns a job-shop simulation. The

The initial metamodels constructed for either robust design j0P-shop has three products, five machine groups, and vary-
or variance attribution should be assessed and may need to be"g processing time distributions, product mix percentages,
refined. The experimental plans are typically unreplicated €tc. Experimentation showed that two configurations could
because of the cost of experimentation. This means that the have the same mean response to two decimal places, yet
analyst may have only a single degree of freedom for error in variances which differed by over a factor of two. The config-
the initial regression metamodels, so heavy reliance should urations corresponding to the best means were dramatically
not be placed on the raw-values orz-values. An option inferior to the low loss designs: one job shop configuration
offered by many statistical packages (or which can be done Which was among the best in terms of mean performance
manually) is a normal probability plot, which can be used to had a 36% higher loss then the low-loss configuration, yet
graphically assess whether or not any effects larger than the it used more machines.

noise thresh-hold of the the experiment. Normal probability The robust design philosophy and joint metamodeling
plots work well when 15 or more factor or interaction effects @Pproach have a synergistic relationship: they typically
are estimated. Ifthe regression metamodels can be simplified Provide the analyst with more information than would result
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where the{g;} and {y;} are the least-squares regression
coefficients. By treating these coefficients as fixed, the
overall variance can be approximated by
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from either a loss comparison of only the configurations performance. If changes in the noise factor variance also
tested, or from a single metamodel which directly measures affect the system mean, then both the mean and variance
system loss or cost. In the latter case, if a metamodel shows components should be included in the cost assessment via
that expected loss decreases as fa&tancreases, the root  equation (2).
cause remains unknown. Perhaps the response mean is  Variance attribution can also aid in simulation modeling
closer to the target. Perhaps the response variance is smallerand validation. If the distributional characteristics used to
It could be that both the mean and variance improve, or generate random components of the simulation model are
that an improvement in one aspect is partially offset by a themselves estimates, and if the system is highly sensitive to
degradation in the other. However, separate construction of those characteristics, then the simulation may not mimic the
metamodels for the system mean and variability facilitate true system behavior adequately. Once again, the analyst
the identification of new designs which may be even better can use variance attribution to obtain feedback regarding
than those considered in the experimental framework. the modeling process. This allows model refinement efforts
to be expended in accordance to factor sensitivity.
5.2 Variance Attribution Analysis
6 BENEFITS
Several types of questions can be addressed. First, one
can assess the overall mean and variability for a particular The benefits of using a robust design approach can be sub-
configuration, e.g., that chosen at the end of the robust design stantial. Many of these apply regardless of the type of model
stage. If the decision factors can be perfectly controlled at (simulation, analytic, prototype) on which experiments are
their chosen settings, then the overall mean and variance performed. First, because the chosen system configuration
can just be estimated by the robust design metamodels. is robust, it is likely to work well across a variety of real-
However, if variation in the decision factors’ settings around izations of noise factor values. This means that there are
their nominal values is anticipated, an additional experiment likely to be fewer unpleasant surprises when the decision
will provide a better picture of the system’s capabilities. is implemented. A second benefit is improved communica-

Other questions concern the relative effects of the noise tion between the analyst and client via expected loss. This
factors. The term(82 + ﬁj?)Var(Wj) in equation (5) is also makes it possible to evaluate trade-offs between the
called thetransmitte(f variancdor noise factorW;. This costs of reducing noise and the benefits of improving per-
indicates the amount of variability in the noise factor whichis formance quality. There are times when the insights gained
passed along to variance in the response. Depending on thefrom the robust design process will allow decision-makers
magnitudes oi‘?,- andy;, variation inW; can be amplified to simultaneously improve performance and decrease costs.
or dampened by the system. The teyﬁﬁl in equation (5) Finally, the fact that expected loss is calculated facilitates
is called theinherent variance it is the smallest variance  continuous improvement: even if target value is achieved
achievable if all noise factors investigated in the experiment on average, one can always seek to identify factors that
have variances driven to zero. (For Monte Carlo simulations, can further reduce the variability of the response. In this
all randomness has been removed during experimentation manner, factors that were initially classified as noise factors
and everyy; can be replaced by zero.) may become decision factors at a later date.

Once transmitted variances have been computed for all There are some benefits of particular interest to sim-
noise factors, the relative importance of these sources of ulators as well. First, the view that variability is a criti-
variation on the output is apparent. This information can cal component of performance—not solely a nuisance to
be used to evaluate proposed changes to the system. Forbe overcome by taking larger samples—may improve the
example, is it cost-effective to pay more for raw materi- modeling and analysis process, and lend more credibility
als, machine maintenance, or training in order to improve to the simulation results. Second, this structured approach
the consistency of these factors? Alternatively, is it possi- lends itself to rapid model evaluation and scenario analysis.
ble to relax controls slightly and allow more variation in It is much more efficient than trial-and-error at identifying
the inputs without adversely affecting the system behav- “good” decisions. Third, the variance attribution process
ior? If the standard deviation of a noise factdf; can gives the simulation analyst the ability to test whether or
be reduced by a factor af; without affecting the mean not the model performance is highly sensitive to input dis-
performance, then its transmitted variance is reduced by a tributions and their parameters. This can reduce the time
factor of ajz and the overall system variability is reduced required to arrive at a functioning simulation model that

by the amouni(1 — a?)Var(W;). The conversion constant ~ Captures the essential elements of the real-world process.
J Lo . .
¢ from equation (2) can be used to express the overall per- If certain input parameters have little impact on the per-

formance change in dollars. A comparison with the cost of formance, then it is not necessary to spend a great deal of
implementing the proposed change then shows whether or time or resources collecting data to build accurate empirical

not such implementation would further improve the system distributions. If, however, performance is found to vary
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greatly for small changes in distribution parameters, this is
critical to identify in order to insure that good decisions are
made. Finally, one may be able to assagwiori whether

or not it would be valuable to add more complexity to

component models. This will focus the modelers’ efforts
on refining the simulation in ways that add value, rather
than simply adding to the run-time requirements.

7 CONCLUDING REMARKS

Box, G. E. P. and Draper, N. R. 198 Empirical model-
building and response surfacellew York: John Wiley
and Sons, Inc.

Box, G. E. P.,, W. G. Hunter and J. S. Hunter. 19%3atistics
for experimenters New York: John Wiley and Sons,
Inc.

Donohue, J. M., E. R. Houck and R. H. Meyers. 1992. Sim-
ulation designs for quadratic response surface models in
the presence of model misspecificatiodanagement
Science38 (12): 1765-1791.

The approach outlined in this paper integrates the concepts Hood, S. J. and P. D. Welch. 1993. Response surface

of robust design with response surface metamodeling and

system optimization efforts for discrete-event simulation.

The simulation arena is amenable to analysis using robust
design strategies since all factors are controllable by the
analyst. The efficiency gained by designed experimentation

is particularly beneficial for complex simulation models,

since each realization of system performance corresponds

to the results of a (potentially lengthy) run.

In summary, robust design can be a highly useful ap-
proach for analyzing models of complex systems for several
reasons.

» It is flexible Robust design can be applied to
terminating or non-terminating simulation mod-
els analytic models, statistical models, or physical
prototypes.

« It is efficient Robust design can indicate when
model components have sufficient detail. Sampling
plans can incorporate simulation-specific artificial
factors, and be chosen to keep either the data
requirements or the analysts’ time and effort low.

» Solutions are realistic by designThe suggested
system configurations have already shown that they
will behave well over a broad range of adverse
conditions.

» |t facilitates continuous improvemenRobust de-
sign clearly indicates important determinants of
performance variation, and guides efforts for sys-
tem ‘optimization’ and improvement by conveying
hidden costs to the decision-makers.
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