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ABSTRACT

Discrete-event simulation models typically have stochastic

elements that mimic the probabilistic nature of the system

under consideration. Successful input modeling requires a
close match between the input model and the true underlying
probabilistic mechanism associated with the system. The
general question considered here is how to model an element
(e.g., arrival process, service times) in a discrete-event sim-
ulation given a data set collected on the element of interest.
For brevity, it is assumed that data is available on the aspect
of the simulation of interest. It is also assumed that raw

data is available, as opposed to censored data, grouped data,

or summary statistics. Most simulation texts (e.g., Law and

Kelton 2000) have a broader treatment of input modeling

than presented here. Nelson et al. (1995) and Nelson and
Yamnitsky (1998) survey advanced techniques.

1 COLLECTING DATA

There are two approaches that arise with respect to the
collection of data. The first is the classical approach, where

a designed experiment is conducted to collect the data. The
second is the exploratory approach, where questions are
addressed by means of existing data that the modeler had
no hand in collecting. The first approach is better in terms

of control and the second approach is generally better in

terms of cost.

Collecting data on the appropriate elements of the sys-
tem of interest is one of the initial and pivotal steps in
successful input modeling. An inexperienced modeler, for
example, collects wait times on a single-server queue when
waiting time is the performance measure of interest. Al-
though these wait times are valuable for model validation,
they do not contribute to the input model. The appropriate
data elements to collect for an input model for a single-
server queue are typically arrival and service times. An
analysis of sample data collected on such a queue is given
in sections 3.1 and 3.2.
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Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn
that there are several things that can be “wrong” about the
data set. Vending machine sales will be used to illustrate
the difficulties.

Wrong amount of aggregation. We desire to model
daily sales, but have only monthly sales.

Wrong distribution in time. We have sales for this
month and want to model next month’s sales.
Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at location
B.

Censored data. We want to modieimand but we
only havesalesdata. If the vending machine ever
sold out, this constitutes a right-censored obser-
vation. The reliability and biostatistical literature
contains techniques for accommodating censored
data sets (Lawless 1982).

Insufficient distribution resolution. We want the
distribution of number of soda cans sold at a par-
ticular vending machine, but our data is given in
cases, effectively rounding the data up to the next
multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy that illustrates the scope of po-
tential input models that are available to simulation analysts.
Modelers too often restrict their choice of input models to
the top two branches. There is certainly no uniqueness in the
branching structure chosen for the taxonomy. The branches
under stochastic processeg$for example, could have been
statefollowed by time rather thartime followed by state

as presented.
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Figure 1: A Taxonomy for Input Models
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Examples of specific models that could be placed on In conclusion, modelers are too often limited to uni-
the branches of the taxonomy appear at the far right of variate, stationary models since software is typically written
the diagram. Mixed, univariate, time-independent input for fitting distributions to these models. Successful input
models have “empirical/trace-driven” given as a possible modeling requires knowledge of the full range of possible
model. All of the branches include this particular model. probabilistic input models.

A trace-driveninput model simply generates a process that

is identical to the collected data values so as not to rely 3 EXAMPLES

on a parametric model. A simple example is a sequence

of arrival times collected over a 24-hour time period. The Two simple examples illustrate the types of decisions that
trace-driven input model for the arrival process is generated often arise in input modeling. The first example determines
by having arrivals occur at the same times as the observed an input model for service times and the second example
values. determines an input model for an arrival process.

The upper half of the taxonomy contains models that
are independent of time. These models could have been 3.1 Service Time Model
referred to adMonte Carlomodels. Models are classified
by whether there is one or several variables of interest, and Consider a data set of = 23 service times collected to
whether the distribution of these random variables is dis- determine an input model in a discrete-event simulation of
crete, continuous, or contains both continuous and discrete a queuing system. The service times in seconds are
elements. Examples of univariate discrete models include
the binomial distribution and a degenerate distribution with ~ 105.84  28.92 98.64 55.56 128.04 45.60
all of its mass at one value. Examples of continuous distri- ~ 67.80 105.12 48.48 51.84 173.40 51.96
butions include the normal distribution and an exponential 54.12 68.64 93.12 68.88 84.12 68.64
distribution with a random parametér (see, for example, 41.52 12792 4212 17.88 33.00.

Martz and Waller 1982). Bézier curves (Flanigan—Wagner ) ) ) )
and Wilson 1993) offer a unique combination of the para- [Although these service times come from th_e I|_fe testing
metric and nonparametric approaches. An initial distribution lt€rature (Lawless 1982, p. 228), the same principles apply
is fitted to the data set, then the modeler decides whether {0 POth input modeling and survival analysis.] _
differences between the empirical and fitted models rep- The first step is to assess whether the observations

resent sampling variability or an aspect of the distribution &€ independent and identically distributed (iid). The data
that should be included in the input model. must be given in the order collected for independence to

Examples ok-variable multivariate input models (John- be assessed. Situations where the iid assumption wimild

son 1987, Wilson 1997) include a sequenck iidependent P valid include:
binomial random variables, a multivariate normal distribu-
tion with meanu and variance-covariance matri® and

a bivariate exponential distribution (Barlow and Proschan
1981).

The lower half of the taxonomy contains stochastic pro-
cess models. These models are often used to solve problems
at the system level, in addition to serving as input models
for simulations with stochastic elements. Models are clas-
sified by how time is measured (discrete/continuous), the
state space (discrete/continuous) and whether the model is
stationary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether the |¢ 5 simple linear regression of the observation numbers re-
model will be called a “chain” or a “process”, and the sta-  ressed against the service times shows a significant nonzero
t|onary/nonst_at|onary branch t_yp|cally determines whether slope, then the iid assumption is probably not appropriate.
the model will be preceded with the term *homogeneous” Assume that there is a suspicion that a learning curve

or “nonhomogeneous”. Examples of discrete-time stochas- jg present, which makes a modeler suspect that the service

tic processes include homogeneous, discrete-time Markov 4 as are decreasing. One appropriate hypothesis test is
chains (Ross 1997) and ARIMA time series models (Box

and Jenkins 1976). Since point processes are counting Ho:pL=0
processes, they have been placed on the continuous-time,
discrete-space branch.

* A new teller has been hired at a bank and the
23 service times represent a task that has a steep
learning curve. The expected service time is likely
to decrease as the new teller learns how to perform
the task more efficiently.

The service times represent 23 times to completion
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the expected

time to complete the task is likely to increase with

time.
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versus
Hi:81<0

associated with the linear model (Neter, Wasserman, and
Kutner 1989)

Y = Bo+ B1X +e,

whereX is the observation numbe, is the service timegg

is the interceptp is the slope, andis an error term. Figure

2 shows a plot of théx;, y;) pairsfori = 1,2, ..., 23, along 2
with the estimated regression line. Thevalue associated

with the hypothesis testis 0.14, which is not enough evidence

to conclude that there is a statistically significant learning 0 -
curve present. The negative slope is likely due to sampling ‘ ‘ ‘ ‘
variability. The p-value may, however, be small enough to 0 50 100 150
warrant further data collection. Figure 3: Histogram of Service Times
T 3
n -
: = Z(’“‘ x) — 0.8
150 - A=A
. Examples of the interpretations of these sample statistics
are:
00 4" . ' .
. « Acoefficient of variatiors /x close to 1, along with
\\ the appropriate histogram shape, indicates that the
50 | t, B exponential distribution is a potential input model.
. t + A sample skewness close to O indicates that a
. symmetric distribution (e.g., a normal or uniform
0 Obsgrvation distribution) is a potential input model.
Number
5 10 15 20 The next decision that needs to be made is whether a
Figure 2: Service Time Vs. Observation Number parametric or nonparametric input model should be used.

One simple nonparametric model would repeatedly select
There are a number of other graphical and statistical one of the service times with probability23. The small
methods for assessing independence. These include analysisize of the data set, the tied value, 68.64 seconds, and
of the sample autocorrelation function associated with the the observation in the far right-hand tail of the distribution,
observations and a scatterplot of adjacent observations. For173.40 seconds, tend to indicate that a parametric analysis is
this particular example, assume that we are satisfied that more appropriate. For this particular data set, a parametric
the observations are truly iid in order to perform a classical approach is chosen.
statistical analysis. There are dozens of choices for a univariate para-
The next step in the analysis of this data set includes metric model for the service times. These include general
plotting a histogram and calculating the values of some families of scalar distributions, modified scalar distributions
sample statistics. A histogram of the observations is shown and commonly-used parametric distributions (see Schmeiser
in Figure 3. Although the data set is small, a skewed bell- 1990). Since the data is drawn from a continuous popula-
shaped pattern is apparent. The largest observation lies intion and the support of the distribution is positive, a time-
the far right-hand tail of the distribution, so care must be independent, univariate, continuous input model is chosen.
taken to assure that it is representative of the population. The The shape of the histogram indicates that the gamma, inverse
sample mean, standard deviation, coefficient of variation, Gaussian, log normal, and Weibull distributions (Lawless
and skewness are 1982) are good candidates. The Weibull distribution is an-
alyzed in detail here. Similar approaches apply to the other
=052 distributions.
Parameter estimates for the Weibull distribution can
be found by least squares, the method of moments, and
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maximum likelihood. Due to desirable statistical proper-
ties, maximum likelihood is emphasized here. The Weibull
distribution has probability density function

fx) = A e L= (0" x >0,
where 1 is a positive scale parameter ands a positive

shape parameter. Let, xo, ..., x, denote the data values.
The likelihood function is

n n k=1
Lk k) = l—[ fxi) = A" k" |:1_[xi:| e Liaa )"
i=1 i=1

Since the natural logarithm (log) is a monotone function, the
likelihood function and its logarithm achieve their maximum
at the same values afandx. The mathematics are typically
more tractable for maximizing log likelihood functions,
which, for the Weibull distribution, is

log L(%, k) = nlogk + knlogh + (k — 1) Zlogxi
i1

n
K K
—A E X; .
i=1

The 2x 1 score vector has elements
n
d |Og L()\., K) _ ﬂ . K)\,K_l fo
A A P

and

dlogL(r, k) _n

n n
” +nlogr+ ) logx; — Y (Ax)* logix;.

Tk
i=1 i=1

When these equations are equated to zero, the simultaneous

equations have no closed-form solution for the MLEsnd
K:

n

Kkn

o /c)»"_llef‘ =0
i=1

n n

n

- +nlogi + Ellogx,- — El(xxi)l( logix; = 0.
1= 1=

To reduce the problem to a single unknown, the first equation
can be solved fok in terms ofx yielding

()
Zf’:le '
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Law and Kelton (2000, p. 305) give an initial estimate #or
and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimatdrandx.
Their algorithm is guaranteed to converge for any positive
initial estimate forx for a complete data set.

The score vector has a mean @fand a variance-
covariance matrix (A, ) given by the 2x 2 Fisher infor-
mation matrix

—32log L(X,x) E —32log L(X k)

I(}\. K) _ , N2 Ak
’ —32log L(X k) E —32log L(X k)
T okox T w?

The observed information matrix

—32logL(A,8) —d2logL(i,Q)
ooy — 2 IrIK _
O, k) = —32logL(h,8) —d8%logL(.&) |’

EPE K2

can be used to estimafgX, ).

For the 23 service times, the fitted Weibull distribution
has maximum likelihood estimatods= 0.0122 andé =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators is log (i, ) = —113691. Figure
4 shows the empirical cumulative distribution function (a
step function with a step of heighy/id at each data point)
along with the Weibull fit to the data.

F)
10 A

08 1

Empirical estimator

06 A
Weibull fit

04 4

00 1

T T T T t
0 50 100 150

Figure 4: Empirical and Fitted Cumulative Distribu-
tion Functions for the Service Times

The observed information matrix is

681, 000

875 104 |’

06 %) = [ 875}
revealing a positive correlation between the elements of
the score vector. We now consider interval estimators for
A and k. Using the fact that the likelihood ratio statistic,

2[log LOwR) —log L (%, )], is asymptoticallyy 2 distributed
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in n with 2 degrees of freedom and thﬂg,o.os =599, a
95% confidence region for the parameters isiaknd «
satisfying

2[—113691—log L (A, k)] < 5.99.
The 95% confidence region is shown in Figure 5. The
line x = 1 is not interior to the region, indicating that the

exponential distribution is not an appropriate model for this
particular data set.

A
0.020
0.015 +

0.010 +

0.005

T T T T — K

0 1 2 3 4

Figure 5: 95% Confidence Region Based on the Like-
lihood Ratio Statistic

As further proof thatc is significantly different from
1, the standard errors of the distribution of the parameter
estimators can be computed by using the inverse of the
observed information matrix

0.00000165

PP ~0.000139
0 “””‘[—0.000139 }

0.108

This is the asymptotic variance-covariance matrix for the
parameter estimators andk. The standard errors of the

parameter estimators are the square roots of the diagonaltion function, e, F(x) =

elements
6; = 0.00128 6; = 0.329
Thus an asymptotic 95% confidence interval #ois

2.10- (1.96)(0.329 < « < 2.10+ (1.96)(0.329

or

1.46 < k < 2.74,
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sincezp.025 = 1.96. Since this confidence interval does not
contain 1, the inclusion of the Weibull shape parameter
is justified.

The model adequacy should now be assessed. Since the
chi-square goodness-of-fit test has arbitrary interval limits,
it should not be applied to small data sets (exg= 23),
such as the service times being considered here. The
Kolmogorov—Smirnov, Cramer—von Mises, or Anderson—
Darling goodness-of-fit tests (Lawless 1982) are appropriate
here. The Kolmogorov—Smirnov test statistic for this data
set with a Weibull fitis 0.151, which measures the maximum
vertical difference between the empirical and fitted cumu-
lative distribution functions. This test statistic corresponds
to a p-value of approximately 0.15 (Law and Kelton 2000,
page 366), so the Weibull distribution provides a reasonable
model for these service times. The Kolmogorov—Smirnov
test statistic values for several models are shown below,
including four that are superior to the Weibull with respect
to fit.

Model Test statistic
Exponential 0.307
Weibull 0.151
Gamma 0.123
Arctangent 0.094
Log normal 0.090
Inverse Gaussian 0.088

Many of the discrete-event simulation packages ex-
hibited at theWinter Simulation Conferencleave the ca-
pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package also
performs a goodness-of-fit test such as the Kolmogorov—
Smirnov or chi-square test, the distribution that best fits the
data set can quickly be determined.

P—P (probability—probability) and Q-Q (quantile—
guantile) plots can also be used to assess model adequacy.
A P—P plot, for example, is a plot of the fitted cumula-
tive distribution function at théth order statisticx;, i.e.,
F(x()), versus the adjusted empirical cumulative distribu-
205 fori=1,2....n. A
plot where the points fall close to the line passing thru the
origin and (1, 1) indicates a good fit. For the 23 service
times, a P—P plot for the Weibull fit is shown in Figure 6,
along with a line connecting (0, 0) and (1, 1). P-P plots
should be constructed for all competing models.

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation of
whether a stationary (no time dependence) or nonstationary
model is appropriate. Modeling arrivals to a lunch wagon
is used to illustrate the decision-making process.
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process is governed by an intensity functidr) which
gives an arrival rate [e.gA(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time. The next paragraph describes a nonparametric

m>

08 1 procedure for estimating the cumulative intensity function
A(t) = [y A(r)d7 from k realizations.
06 The cumulative intensity function is to be estimated

on (0, S1, where S is a known constant which equalss4
in this case. The interval0, S] may represent the time a

04 - .
el system allows arrivals (e.g., 9 AM to 5 PM at a bank) or

one period of a cycle (e.g., one day at an emergency room).
02 1 Letn;,i =1, 2, ...,k be the number of observations in the
ith realization,n = Zle ni, and letty, 12, ..., tn) be

the order statistics of the superposition of thesalizations,
) = 0 andz,+1) = S. The piecewise-linear estimator of

the cumulative intensity function between the time values
Figure 6: A P—P Plot for the Service Times Using in the superposition is

the Weibull Model

™

0.0 0.2 04 0.6 0.8 10

A in n(t —tg))

Arrival times to a lunch wagon between 10:00 AM and Ar) = + [ }
Dk Dk(tivr — tu

2:30 PM are collected on three days. The realizations were +1D (n + DE(+1) = 1)

generated from a hypothetical arrival process given by Klein ¢, tiy <t < ti4nii =0,1,2 ... n, which is given in

and Roberts (1984). A total of = 150 arrival times were | aemjs (1991) and extended to nonoverlapping intervals in
observed, including; = 56, np = 42 andng = 52 on the Arkin and Leemis (2000). Asymptotic confidence intervals

k =3 days. Defining(0, 4.5] to be the time interval of 54 variate generation via inversion are also contained in
interest (in hours) the three realizations are these references. This estimator (solid line), along with
95% confidence bounds (dashed lines), are given in Figure

02152 03494 0.3943 ... 4175  4.248, 7. The cumulative intensity function estimator at time 4.5
03927 06211 07504 ... 4.044 4.374, is 150/3 = 50, the point estimator for the expected number
and AW
60 4
0.4499 0.5495 0.6921 ... 3.643 4.357.
o

One preliminary statistical issue concerning this data is
whether the three days represent processes drawn from the
same population. External factors such as the weather, day
of the week, advertisement, and workload should be fixed. 0
For this particular example, we assume that these factors
have been fixed and the three processes are representative
of the population of arrival processes to the lunch wagon.

The input model for the process comes from the lower
branch (stochastic processes) of the taxonomy in Figure
1. Furthermore, the arrival times constitute realizations of L
a continuous-time, discrete-state stochastic process, so the w w w w w t
remaining question concerns whether or not the process is 0 1 2 3 4
stationary.

If the process proves to be stationary, the techniques
from the previous example, such as drawing a histogram,
and choosing a parametric or nonparametric model for the . N .
interarrival times, are appropriate. This results in a Poisson ©f &Tiving customers per day. f(r) is linear, a stationary
or renewal process model. Onthe other hand, if the process is M0d€! is appropriate. Since people are more likely to arrive
nonstationary, a nonhomogeneous Poisson process might bd© the lunch wagon between 12:00 2) and 1:00(= 3)
an appropriate input model. A nonhomogeneous Poisson than at other times and the cumulative intensity function

23

Figure 7: Point and 95% Confidence Interval Esti-
mators for the Cumulative Intensity Function
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estimator has a#i-shape, a nonstationary model is indicated.

o . . When the score is equated to zero, the analytic expressions
More specifically, a nonhomogeneous Poisson process is an

appropriate model for the arrival process.

The next question to be determined is whether a para-
metric or nonparametric model should be chosen for the
process. Figure 7 indicates that the intensity function in-
creases initially, remains fairly constant during the noon
hour, then decreases. This may be difficult to model para-
metrically, so a nonparametric approach, possibly using
A(7) in Figure 7 might be appropriate.

There are many potential parametric models for non-

stationary arrival processes. The next paragraph describes

the procedure for fitting power law processwhere the in-

for A andx are

R n ~ 1 /n\Y«
K = - A== (—) .
nlogs —>"7 ;logs S \k

Substituting the arrival times into these formulas yields
MLEs A = 4.86 andc = 1.27. The cumulative intensity
function for the power law process is

A@) = (A" t>0,

which is plotted along with the nonparametric estimator in

tensity function has the same parametric form as the hazard Figure 8. Note that due to the peak in customer arrivals

function for the Weibull distribution.

The likelihood function for estimating the vector of
unknown parameter8 = (01,6, ...,6,) from a single
realization on(0, S] is

n S
L@®) = []‘[ x(zi)} exp[—/ A(t)dt]
i=1 0

MLEs can be determined by maximizirig®) or its loga-
rithm with respect to all unknown parameters. Confidence
intervals for the unknown parameters can be found in a
similar manner to the service time example. Owing to the
additive property of the intensity function for multiple real-
izations, the likelihood function for the casefofealizations

is

n N
L®) = |:1_[k)¥(ti):| eXp[— / kk(t)dt:|.
i=1 0

The power law process has intensity function

A(t) = A<kt t>0,
for A > 0 andx > 0. Thus the likelihood function fok
realizations is

n
_ —k(AS)* 1
LA, k) =k"A"k"e thk .
i=1

The log likelihood function is

n
log L (%, k) = nlog(k) — nk logr — k(A8)* + (k — 1) Y _logt;.
=
The 2x 1 score vector has elements l
dlogL(x, k) _kn kS< k-1
BV
and

dlogL(r, k) B

n
n
” =nlogi + - + > “logt; — k(AS)* log (1.5) .

i=1
24

around the noon hour, the power law process is not an appro-
priate model since it is not able to adequately approximate
the intensity function.

10 A

T T T T T t

0 1 2 3 4

Figure 8: Empirical and Fitted Power Law Estimators
for the Cumulative Intensity Function

Since the intensity function is analogous to the hazard
function for time-independent models, an appropriate 2-
parameter distribution to consider would be one with a
hazard function that increases initially, then decreases. A
log-logistic process, for example, with intensity function
(Lawless 1982)

(A< 1

MO =

t >0,

for A > 0 andx > 0, would certainly be more appropri-
ate. More generally, the EPTF (exponential-polynomial-
trigonometric function) model given by Lee, Wilson and
Crawford (1991) with intensity function

A(t) = exp |:Z a;t’ + y sin(ot + ¢):| t > 0.

i=0

can model a nonmonotonic intensity function.
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