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ABSTRACT

Discrete-event simulation models typically have stochast
elements that mimic the probabilistic nature of the syste
under consideration. Successful input modeling requires
close match between the input model and the true underlyi
probabilistic mechanism associated with the system. Th
general question considered here is how to model an elem
(e.g., arrival process, service times) in a discrete-event sim
ulation given a data set collected on the element of intere
For brevity, it is assumed that data is available on the aspe
of the simulation of interest. It is also assumed that raw
data is available, as opposed to censored data, grouped d
or summary statistics. Most simulation texts (e.g., Law an
Kelton 2000) have a broader treatment of input modelin
than presented here. Nelson et al. (1995) and Nelson a
Yamnitsky (1998) survey advanced techniques.

1 COLLECTING DATA

There are two approaches that arise with respect to t
collection of data. The first is the classical approach, whe
a designed experiment is conducted to collect the data. T
second is the exploratory approach, where questions a
addressed by means of existing data that the modeler h
no hand in collecting. The first approach is better in term
of control and the second approach is generally better
terms of cost.

Collecting data on the appropriate elements of the sy
tem of interest is one of the initial and pivotal steps in
successful input modeling. An inexperienced modeler, fo
example, collects wait times on a single-server queue wh
waiting time is the performance measure of interest. A
though these wait times are valuable for model validation
they do not contribute to the input model. The appropriat
data elements to collect for an input model for a single
server queue are typically arrival and service times. A
analysis of sample data collected on such a queue is giv
in sections 3.1 and 3.2.
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Even if the decision to sample the appropriate eleme
is made correctly, Bratley, Fox, and Schrage (1987) war
that there are several things that can be “wrong” about th
data set. Vending machine sales will be used to illustra
the difficulties.

• Wrong amount of aggregation. We desire to mode
daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for this
month and want to model next month’s sales.

• Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at locatio
B.

• Censored data. We want to modeldemand, but we
only havesalesdata. If the vending machine ever
sold out, this constitutes a right-censored obse
vation. The reliability and biostatistical literature
contains techniques for accommodating censore
data sets (Lawless 1982).

• Insufficient distribution resolution. We want the
distribution of number of soda cans sold at a par
ticular vending machine, but our data is given in
cases, effectively rounding the data up to the nex
multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy that illustrates the scope of p
tential input models that are available to simulation analyst
Modelers too often restrict their choice of input models to
the top two branches. There is certainly no uniqueness in t
branching structure chosen for the taxonomy. The branch
understochastic processes, for example, could have been
statefollowed by time, rather thantime followed by state,
as presented.
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Continuous-time
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Discrete-state
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Stationary

Stationary

Stationary

Nonstationary

Nonstationary
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Input Models

Binomial(n, p)

Normal(µ, σ2)

Continuous

Mixed

Discrete

Empirical / Trace-driven

Normal(µ, 6)

Degenerate(c)

Exponential(3)

ARMA(p, q)

ARIMA(p, d, q)

Nonhomogeneous Poisson
process

Bezier curve

Markov chain

Poisson process(λ)
Renewal process
Semi-Markov chain

Markov process

Independent binomial(n, p)

Bivariate exponential(λ1, λ2, λ12)

Figure 1: A Taxonomy for Input Models
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Examples of specific models that could be placed o
the branches of the taxonomy appear at the far right
the diagram. Mixed, univariate, time-independent inpu
models have “empirical/trace-driven” given as a possib
model. All of the branches include this particular mode
A trace-driveninput model simply generates a process tha
is identical to the collected data values so as not to re
on a parametric model. A simple example is a sequen
of arrival times collected over a 24-hour time period. Th
trace-driven input model for the arrival process is generat
by having arrivals occur at the same times as the observ
values.

The upper half of the taxonomy contains models tha
are independent of time. These models could have be
referred to asMonte Carlomodels. Models are classified
by whether there is one or several variables of interest, a
whether the distribution of these random variables is di
crete, continuous, or contains both continuous and discre
elements. Examples of univariate discrete models inclu
the binomial distribution and a degenerate distribution wit
all of its mass at one value. Examples of continuous dist
butions include the normal distribution and an exponenti
distribution with a random parameter3 (see, for example,
Martz and Waller 1982). Bézier curves (Flanigan–Wagn
and Wilson 1993) offer a unique combination of the para
metric and nonparametric approaches. An initial distributio
is fitted to the data set, then the modeler decides wheth
differences between the empirical and fitted models re
resent sampling variability or an aspect of the distributio
that should be included in the input model.

Examples ofk-variable multivariate input models (John-
son 1987, Wilson 1997) include a sequence ofk independent
binomial random variables, a multivariate normal distribu
tion with meanµ and variance-covariance matrix6 and
a bivariate exponential distribution (Barlow and Proscha
1981).

The lower half of the taxonomy contains stochastic pro
cess models. These models are often used to solve proble
at the system level, in addition to serving as input mode
for simulations with stochastic elements. Models are cla
sified by how time is measured (discrete/continuous), th
state space (discrete/continuous) and whether the mode
stationary in time. For Markov models, the discrete-stat
continuous-state branch typically determines whether t
model will be called a “chain” or a “process”, and the sta
tionary/nonstationary branch typically determines wheth
the model will be preceded with the term “homogeneous
or “nonhomogeneous”. Examples of discrete-time stocha
tic processes include homogeneous, discrete-time Mark
chains (Ross 1997) and ARIMA time series models (Bo
and Jenkins 1976). Since point processes are count
processes, they have been placed on the continuous-tim
discrete-space branch.
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In conclusion, modelers are too often limited to uni-
variate, stationary models since software is typically written
for fitting distributions to these models. Successful inpu
modeling requires knowledge of the full range of possible
probabilistic input models.

3 EXAMPLES

Two simple examples illustrate the types of decisions tha
often arise in input modeling. The first example determine
an input model for service times and the second examp
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set ofn = 23 service times collected to
determine an input model in a discrete-event simulation o
a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testing
literature (Lawless 1982, p. 228), the same principles app
to both input modeling and survival analysis.]

The first step is to assess whether the observation
are independent and identically distributed (iid). The dat
must be given in the order collected for independence t
be assessed. Situations where the iid assumption wouldnot
be valid include:

• A new teller has been hired at a bank and the
23 service times represent a task that has a ste
learning curve. The expected service time is likely
to decrease as the new teller learns how to perform
the task more efficiently.

• The service times represent 23 times to completio
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the expected
time to complete the task is likely to increase with
time.

If a simple linear regression of the observation numbers re
gressed against the service times shows a significant nonze
slope, then the iid assumption is probably not appropriate

Assume that there is a suspicion that a learning curv
is present, which makes a modeler suspect that the serv
times are decreasing. One appropriate hypothesis test is

H0 : β1 = 0
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H1 : β1 < 0

associated with the linear model (Neter, Wasserman, a
Kutner 1989)

Y = β0 + β1X + ε,
whereX is the observation number,Y is the service time,β0
is the intercept,β1 is the slope, andε is an error term. Figure
2 shows a plot of the(xi, yi) pairs fori = 1,2, . . . ,23, along
with the estimated regression line. Thep-value associated
with the hypothesis test is 0.14, which is not enough eviden
to conclude that there is a statistically significant learnin
curve present. The negative slope is likely due to samplin
variability. Thep-value may, however, be small enough to
warrant further data collection.
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Figure 2: Service Time Vs. Observation Number

There are a number of other graphical and statistic
methods for assessing independence. These include anal
of the sample autocorrelation function associated with th
observations and a scatterplot of adjacent observations. F
this particular example, assume that we are satisfied th
the observations are truly iid in order to perform a classica
statistical analysis.

The next step in the analysis of this data set include
plotting a histogram and calculating the values of som
sample statistics. A histogram of the observations is show
in Figure 3. Although the data set is small, a skewed bel
shaped pattern is apparent. The largest observation lies
the far right-hand tail of the distribution, so care must b
taken to assure that it is representative of the population. T
sample mean, standard deviation, coefficient of variatio
and skewness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52
d
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Figure 3: Histogram of Service Times

1

n

n∑
i=1

(
xi − x̄
s

)3

= 0.88.

Examples of the interpretations of these sample statistic
are:

• A coefficient of variations/x̄ close to 1, along with
the appropriate histogram shape, indicates that th
exponential distribution is a potential input model.

• A sample skewness close to 0 indicates that a
symmetric distribution (e.g., a normal or uniform
distribution) is a potential input model.

The next decision that needs to be made is whether
parametric or nonparametric input model should be used
One simple nonparametric model would repeatedly selec
one of the service times with probability 1/23. The small
size of the data set, the tied value, 68.64 seconds, an
the observation in the far right-hand tail of the distribution,
173.40 seconds, tend to indicate that a parametric analysis
more appropriate. For this particular data set, a parametr
approach is chosen.

There are dozens of choices for a univariate para
metric model for the service times. These include genera
families of scalar distributions, modified scalar distributions
and commonly-used parametric distributions (see Schmeis
1990). Since the data is drawn from a continuous popula
tion and the support of the distribution is positive, a time-
independent, univariate, continuous input model is chosen
The shape of the histogram indicates that the gamma, invers
Gaussian, log normal, and Weibull distributions (Lawless
1982) are good candidates. The Weibull distribution is an
alyzed in detail here. Similar approaches apply to the othe
distributions.

Parameter estimates for the Weibull distribution can
be found by least squares, the method of moments, an
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maximum likelihood. Due to desirable statistical proper-
ties, maximum likelihood is emphasized here. The Weibul
distribution has probability density function

f (x) = λκκxκ−1e−(λx)κ x ≥ 0,

whereλ is a positive scale parameter andκ is a positive
shape parameter. Letx1, x2, . . . , xn denote the data values.
The likelihood function is

L(λ, κ) =
n∏
i=1

f (xi) = λnκκn
[
n∏
i=1

xi

]κ−1

e−
∑n
i=1(λxi )

κ

.

Since the natural logarithm (log) is a monotone function, the
likelihood function and its logarithm achieve their maximum
at the same values ofλ andκ. The mathematics are typically
more tractable for maximizing log likelihood functions,
which, for the Weibull distribution, is

logL(λ, κ) = n logκ + κn logλ+ (κ − 1)
n∑
i=1

logxi

−λκ
n∑
i=1

xκi .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
= κn

λ
− κλκ−1

n∑
i=1

xκi

and

∂ logL(λ, κ)

∂κ
= n

κ
+ n logλ+

n∑
i=1

logxi −
n∑
i=1

(λxi)
κ logλxi .

When these equations are equated to zero, the simultaneo
equations have no closed-form solution for the MLEsλ̂ and
κ̂:

κn

λ
− κλκ−1

n∑
i=1

xκi = 0

n

κ
+ n logλ+

n∑
i=1

logxi −
n∑
i=1

(λxi)
κ logλxi = 0.

To reduce the problem to a single unknown, the first equatio
can be solved forλ in terms ofκ yielding

λ =
(

n∑n
i=1 x

κ
i

)1/κ

.

21
l

us

n

Law and Kelton (2000, p. 305) give an initial estimate forκ

and Qiao and Tsokos (1994) present a fixed-point algorith
for calculating the maximum likelihood estimatorsλ̂ andκ̂.
Their algorithm is guaranteed to converge for any positiv
initial estimate forκ for a complete data set.

The score vector has a mean of0 and a variance-
covariance matrixI (λ, κ) given by the 2× 2 Fisher infor-
mation matrix

I (λ, κ) =
E[−∂2 logL(λ,κ)

∂λ2

]
E
[−∂2 logL(λ,κ)

∂κ∂λ

] E
[−∂2 logL(λ,κ)

∂λ∂κ

]
E
[−∂2 logL(λ,κ)

∂κ2

] .
The observed information matrix

O(λ̂, κ̂) =
[−∂2 logL(λ̂,κ̂)

∂λ2

−∂2 logL(λ̂,κ̂)
∂κ∂λ

−∂2 logL(λ̂,κ̂)
∂λ∂κ

−∂2 logL(λ̂,κ̂)
∂κ2

]
,

can be used to estimateI (λ, κ).
For the 23 service times, the fitted Weibull distribution

has maximum likelihood estimatorŝλ = 0.0122 andκ̂ =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators is logL(λ̂, κ̂) = −113.691. Figure
4 shows the empirical cumulative distribution function (a
step function with a step of height 1/n at each data point)
along with the Weibull fit to the data.

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Weibull fit

Empirical estimator

t

F(t)

Figure 4: Empirical and Fitted Cumulative Distribu-
tion Functions for the Service Times

The observed information matrix is

O(λ̂, κ̂) =
[
681,000

875
875
10.4

]
,

revealing a positive correlation between the elements
the score vector. We now consider interval estimators fo
λ and κ. Using the fact that the likelihood ratio statistic,
2[logL(λ̂, κ̂)−logL(λ, κ)], is asymptoticallyχ2 distributed
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in n with 2 degrees of freedom and thatχ2
2,0.05 = 5.99, a

95% confidence region for the parameters is allλ and κ
satisfying

2[−113.691− logL(λ, κ)] < 5.99.

The 95% confidence region is shown in Figure 5. The
line κ = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model for this
particular data set.

0 1 2 3 4

0.0

0.005

0.010

0.015

0.020

OOOOOOOO

λ

κ

Figure 5: 95% Confidence Region Based on the Like-
lihood Ratio Statistic

As further proof thatκ is significantly different from
1, the standard errors of the distribution of the parameter
estimators can be computed by using the inverse of the
observed information matrix

O−1(λ̂, κ̂) =
[
0.00000165
−0.000139

−0.000139
0.108

]
.

This is the asymptotic variance-covariance matrix for the
parameter estimatorŝλ and κ̂. The standard errors of the
parameter estimators are the square roots of the diagona
elements

σ̂
λ̂
= 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval forκ is

2.10− (1.96)(0.329) < κ < 2.10+ (1.96)(0.329)

or

1.46< κ < 2.74,
22
l

sincez0.025= 1.96. Since this confidence interval does no
contain 1, the inclusion of the Weibull shape parameterκ

is justified.
The model adequacy should now be assessed. Since

chi-square goodness-of-fit test has arbitrary interval limits
it should not be applied to small data sets (e.g.,n = 23),
such as the service times being considered here. T
Kolmogorov–Smirnov, Cramer–von Mises, or Anderson–
Darling goodness-of-fit tests (Lawless 1982) are appropria
here. The Kolmogorov–Smirnov test statistic for this dat
set with a Weibull fit is 0.151, which measures the maximum
vertical difference between the empirical and fitted cumu
lative distribution functions. This test statistic correspond
to ap-value of approximately 0.15 (Law and Kelton 2000,
page 366), so the Weibull distribution provides a reasonab
model for these service times. The Kolmogorov–Smirno
test statistic values for several models are shown belo
including four that are superior to the Weibull with respec
to fit.

Model Test statistic
Exponential 0.307

Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

Many of the discrete-event simulation packages ex
hibited at theWinter Simulation Conferencehave the ca-
pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package als
performs a goodness-of-fit test such as the Kolmogorov
Smirnov or chi-square test, the distribution that best fits th
data set can quickly be determined.

P–P (probability–probability) and Q–Q (quantile–
quantile) plots can also be used to assess model adequa
A P–P plot, for example, is a plot of the fitted cumula-
tive distribution function at theith order statisticx(i), i.e.,
F̂ (x(i)), versus the adjusted empirical cumulative distribu
tion function, i.e.,F̃ (x(i)) = i−0.5

n
, for i = 1,2, . . . , n. A

plot where the points fall close to the line passing thru th
origin and (1, 1) indicates a good fit. For the 23 servic
times, a P–P plot for the Weibull fit is shown in Figure 6,
along with a line connecting (0, 0) and (1, 1). P–P plot
should be constructed for all competing models.

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation o
whether a stationary (no time dependence) or nonstationa
model is appropriate. Modeling arrivals to a lunch wago
is used to illustrate the decision-making process.
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Figure 6: A P–P Plot for the Service Times Using
the Weibull Model

Arrival times to a lunch wagon between 10:00 AM an
2:30 PM are collected on three days. The realizations we
generated from a hypothetical arrival process given by Kle
and Roberts (1984). A total ofn = 150 arrival times were
observed, includingn1 = 56, n2 = 42 andn3 = 52 on the
k = 3 days. Defining(0,4.5] to be the time interval of
interest (in hours) the three realizations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this data
whether the three days represent processes drawn from
same population. External factors such as the weather, d
of the week, advertisement, and workload should be fixe
For this particular example, we assume that these fact
have been fixed and the three processes are represent
of the population of arrival processes to the lunch wago

The input model for the process comes from the low
branch (stochastic processes) of the taxonomy in Figu
1. Furthermore, the arrival times constitute realizations
a continuous-time, discrete-state stochastic process, so
remaining question concerns whether or not the process
stationary.

If the process proves to be stationary, the techniqu
from the previous example, such as drawing a histogra
and choosing a parametric or nonparametric model for t
interarrival times, are appropriate. This results in a Poisso
or renewal process model. On the other hand, if the proces
nonstationary, a nonhomogeneous Poisson process migh
an appropriate input model. A nonhomogeneous Poiss
2
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process is governed by an intensity functionλ(t) which
gives an arrival rate [e.g.,λ(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time. The next paragraph describes a nonparametri
procedure for estimating the cumulative intensity function
3(t) = ∫ t0 λ(τ)dτ from k realizations.

The cumulative intensity function is to be estimated
on (0, S], whereS is a known constant which equals 4.5
in this case. The interval(0, S] may represent the time a
system allows arrivals (e.g., 9 AM to 5 PM at a bank) or
one period of a cycle (e.g., one day at an emergency room
Let ni , i = 1,2, . . . , k be the number of observations in the
ith realization,n = ∑k

i=1 ni , and let t(1), t(2), . . . , t(n) be
the order statistics of the superposition of thek realizations,
t(0) = 0 andt(n+1) = S. The piecewise-linear estimator of
the cumulative intensity function between the time values
in the superposition is

3̂(t) = in

(n+ 1)k
+
[

n(t − t(i))
(n+ 1)k(t(i+1) − t(i))

]
for t(i) < t ≤ t(i+1); i = 0,1,2, . . . , n, which is given in
Leemis (1991) and extended to nonoverlapping intervals in
Arkin and Leemis (2000). Asymptotic confidence intervals
and variate generation via inversion are also contained in
these references. This estimator (solid line), along with
95% confidence bounds (dashed lines), are given in Figur
7. The cumulative intensity function estimator at time 4.5
is 150/3= 50, the point estimator for the expected number

0 1 2 3 4

0

10

20

30

40

50

60

t

   (t)Λ     

Figure 7: Point and 95% Confidence Interval Esti-
mators for the Cumulative Intensity Function

of arriving customers per day. If̂3(t) is linear, a stationary
model is appropriate. Since people are more likely to arrive
to the lunch wagon between 12:00 (t = 2) and 1:00 (t = 3)
than at other times and the cumulative intensity function
3
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estimator has anS-shape, a nonstationary model is indicated
More specifically, a nonhomogeneous Poisson process is
appropriate model for the arrival process.

The next question to be determined is whether a par
metric or nonparametric model should be chosen for th
process. Figure 7 indicates that the intensity function in
creases initially, remains fairly constant during the noo
hour, then decreases. This may be difficult to model par
metrically, so a nonparametric approach, possibly usin
3̂(t) in Figure 7 might be appropriate.

There are many potential parametric models for non
stationary arrival processes. The next paragraph descri
the procedure for fitting apower law process, where the in-
tensity function has the same parametric form as the haza
function for the Weibull distribution.

The likelihood function for estimating the vector of
unknown parametersθ = (θ1, θ2, . . . , θp) from a single
realization on(0, S] is

L(θ) =
[
n∏
i=1

λ(ti)

]
exp

[
−
∫ S

0
λ(t)dt

]
.

MLEs can be determined by maximizingL(θ) or its loga-
rithm with respect to all unknown parameters. Confidenc
intervals for the unknown parameters can be found in
similar manner to the service time example. Owing to th
additive property of the intensity function for multiple real-
izations, the likelihood function for the case ofk realizations
is

L(θ) =
[
n∏
i=1

kλ(ti)

]
exp

[
−
∫ S

0
kλ(t)dt

]
.

The power law process has intensity function

λ(t) = λκκtκ−1 t > 0,

for λ > 0 andκ > 0. Thus the likelihood function fork
realizations is

L(λ, κ) = knλnκκne−k(λS)κ
n∏
i=1

tκ−1
i .

The log likelihood function is

logL(λ, κ) = n log(kκ)− nκ logλ− k(λS)κ + (κ − 1)
n∑
i=1

log ti .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
= κn

λ
− kSκκλκ−1

and

∂ logL(λ, κ)

∂κ
= n logλ+ n

κ
+

n∑
i=1

log ti − k(λS)κ log(λS) .
24
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When the score is equated to zero, the analytic expressio
for λ andκ are

κ̂ = n

n logS −∑n
i=1 log ti

λ̂ = 1

S

(n
k

)1/κ
.

Substituting the arrival times into these formulas yields
MLEs λ̂ = 4.86 andκ̂ = 1.27. The cumulative intensity
function for the power law process is

3(t) = (λt)κ t > 0,

which is plotted along with the nonparametric estimator in
Figure 8. Note that due to the peak in customer arrival
around the noon hour, the power law process is not an appr
priate model since it is not able to adequately approximat
the intensity function.
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Figure 8: Empirical and Fitted Power Law Estimators
for the Cumulative Intensity Function

Since the intensity function is analogous to the hazar
function for time-independent models, an appropriate 2
parameter distribution to consider would be one with a
hazard function that increases initially, then decreases.
log-logistic process, for example, with intensity function
(Lawless 1982)

λ(t) = λκ(λt)κ−1

1+ (λt)κ t > 0,

for λ > 0 andκ > 0, would certainly be more appropri-
ate. More generally, the EPTF (exponential-polynomial-
trigonometric function) model given by Lee, Wilson and
Crawford (1991) with intensity function

λ(t) = exp

[
m∑
i=0

αit
i + γ sin(ωt + φ)

]
t > 0.

can model a nonmonotonic intensity function.
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